Histopathological Changes in the Liver and Spleen of Common Carp Cyprinus carpio L. Challenge with Pseudomonas aeruginosa (Schroeter, 1872) Fed with Dietary Chitosan and Ciprofloxacin

Authors

  • Omeet F.M.H Al-Mossawai Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Basrah
  • Atheer H. Ali Department of Fisheries and Marine Resources, College of Agriculture, University of Basrah

DOI:

https://doi.org/10.37077/25200860.2019.209

Keywords:

Fish, Cyprinidae, Bacteria, Pseudomonas, Chitosan, Antibiotic

Abstract

The current study was conducted for 90 days in order to study the efficacy of dietary chitosan and antibiotic ciprofloxacin supplement as a resistance and presentation of fishes against the bacteria (Pseudomonas aeruginosa) by effect on liver and spleen of fishes. The fishes were divided into four categories of groups at two periods; the former at infection (at 90th day of feeding period) and the latter at post infection (14 days after the challenge period). The first and second groups (T1 and T2) were considered as negative and positive controls (both fed on standard diet), respectively, while the third and fourth groups (T3 and T4) represent dietary chitosan and dietary antibiotic supplement, respectively. All groups, except T1, were challenged by bacteria at 90th day of feeding period. Liver of positive control revealed severe degeneration, especially around hepatic vein with congestion and fibrosis, while the spleen exhibited haemorrhage, lymphocytosis and lymphatic accumulation of white pulp with hemosiderin. The histopathological changes in liver of chitosan group at the infection period were characterized by vacuolation, inflammatory cells and hemorrhage, while necrosis and swelling of hepatocytes and infiltration with inflammatory cells at post infection period. The spleen at the infection period was suffered from leukocytosis, accumulation of inflammatory cells and macrophages, presence of focus from phagocytic macrophages. The liver in antibiotic group of infection period displayed narrowing of the sinusoid, swelling of hepatocytes and infiltration with inflammatory cells, hyperplasia in the bile duct, while the abnormal accumulation of lymphatic follicles. At postinfection period, the spleen showed thickness at the wall capsule, presence of homogeneous pinkish matter around arteriole in the red pulp and lymphocytosis in the white pulp. The supplemented chitosan groups showed a significant decrease in the mortality percentage . The supplemented chitosan groups showed a significant decrease in the mortality percentage.

Downloads

Download data is not yet available.

References

Alishahi, M.; Esmaeili Rad, A.; Zarei, M. & Ghorbanpour, M. (2014). Effect of dietary chitosan on immune response and disease resistance in Cyprinus carpio. Iran. J. Vet. Med., 8(2):125-133.

Amrevuawho, M.A.; Akinyemi, A.A.; Ezeri, O.G.N.; Bankole, O.M. & Takeet, O.V. (2014). Pathological study of Clarias gariepinus Burchell, 1822) sub-adult artificially infected with Pseudomonas aeruginosa. Braz. J. Aquat. Sci. Technol. 18(2): 65-70.

Austin, B. & Austin, D.A. (2007). Bacterial fish pathogens; disease of farmed and wild fish, 6th ed. Springer Publ., London: 319pp.

Chen, Y.; Zhu, X.; Yang, Y.; Han, D.; Jin, J. & Xie, S. (2014). Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquac. Nutr., 20(5): 532-546.

Clatworthy, A.E.; Lee, J.S.; Leibman, M.; Kostun, Z.; Davidson, A.J. & Hung, D.T. (2009). Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect. Immun., 77: 1293-1303.

Flores-Miranda, B.M.; Espinosa-Plascencia, A.; Gómez-Jiménez, S.; López-Zavala, A.A.; González-Carrillo, H.H. & Bermúdez-Almada, M.D.C. (2012). Accumulation and elimination of enrofloxacin and ciprofloxacin in tissues of shrimp Litopenaeus vannamei under laboratory and farm conditions. Int. Scholarly Res. Netw. (ISRN) Pharm., 2012, Article ID 374212, 7pp. doi:10.5402/2012/374212.

Garvey, J.S.; Cremer, N.E. & Sussdrof, D.H. (1977). Methods in Immunology. 3rd ed. W.A. Benjamin, Inc. Massachusetts: 545pp.

Harikrishnan, R.; Kim, J.-S.; Balasundaram, C. & Heo, M.S. (2012). Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi. Exp. Parasitol., 131: 116–124.

Harley, J. & Prescott, L. (2002). Bacterial Morphology and Staining. Laboratory Exercises in Microbiology. 5th ed., McGraw-Hill, New York: 320pp.

Huizinga, H.W.; Esch, G.W. & Hazen, T.C. (1979). Histopathology of red?sore disease (Aeromonas hydrophila) in naturally and experimentally infected largemouth bass Micropterus salmoides (Lacepede). J. Fish Dis., 2(4): 263-277.

Humason, G.L. (1972). Animal Tissue Techniques 3rd ed., W. H. Freeman, San Francisco: 641pp.

Iheanacho, S.C.; Ogunji, J.O.; Ogueji, E. O.; Nwuba, L.A.; Nnatuanya, I.O.; Ochang, S. N.; Mbah, C.E.; Usman, I. & Haruna, M. (2017). Comparative assessment of ampicillin antibiotic and ginger (Zingiber officinale) effects on growth, haematology and biochemical enzymes of Clarias gariepinus Juvenile. J. Pharmacog. Phytochem., 6(3): 761-767.

Kamali Najafabad, M.; Imanpoor, M.R.; Taghizadeh, V. & Alishahi, A. (2016). Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol. Biochem., 42(4): 1063-1071. doi: 10.1007/s10695-016-0197-3.

Koh, C.B.; Romano, N.; Zahrah, A.S. & Ng, W.K. (2016). Effects of a dietary organic acids blend and oxytetracycline on the growth, nutrient utilization and total cultivable gut microbiota of the red hybrid tilapia, Oreochromis sp., and resistance to Streptococcus agalactiae. Aquac. Res., 47(2): 357-369.

Lin, S.; Mao, S.; Guan, Y.; Luo, L.; Luo, L. & Pan, Y. (2012). Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture, 342: 36-41.

Liyanage, G. & Manage, P. (2015). Presence of tetracycline and oxytetracycline resistant bacteria and resistant genes in effluent water of Zoological Garden, Sri Lanka. In Proc. 11th Int. Acad. Conf. Dev. Sci. Technol. (IACDST-2015): 11-14.

Magdy, I.; El-Hady, M.; Ahmed, H.; Elmeadawy, S. & Kenwy, A. (2014). A contribution on Pseudomonas aeruginosa infection in African catfish (Clarias gariepinus). Res. J. Phar. Biol. Chem. Sci., 5(5): 575-588.

Maqsood, S.; Singh, P.; Samoon, M.H. & Balange, A.K. (2002). Effect of dietary chitosan on non-specific immune response and growth of Cyprinus carpio challenged with Aeromonas hydrophila. Int. Aquat. Res., 2: 77-85.

Manage, P.M. (2018). Heavy use of antibiotics in aquaculture, emerging human and animal health problems: A review. Sri Lanka J. Aquat. Sci., 23(1): 13-27.

Meshkini, S., Tafy, A.A., Tukmechi, A. & Farhang-Pajuh, F. (2012). Effects of chitosan on hematological parameters and stress resistance in rainbow trout (Oncorhynchus mykiss). Vet. Res. Forum, 3(1): 49-54.

Mori, T.; Murakami, M.; Okumura, M.; Kadosawa, T.; Uede, T. & Fujinaga, T. (2005). Mechanism of macrophage activation by chitin derivatives. J. Vet. Med. Sci., 67(1): 51-56.

Mustafa, S.A.; Alfaragi, J.K. & Aref, Z. (2014). The influence of chitosan on immune status and survival rate of Cyprinus carpio L. Kufa J. Vet. Med. Sci., 5(2): 93-104.

Pham, D.K.; Chu, J.; Do, N.T.; Brose, F.; Degand, G.; Delahaut, P.; De Pauw, E.; Douny, C.; Nguyen, K.V.; Vu, T.D.; Scippo, M.L. & Wertheim, H.F. (2015). Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. Ecohealth, 12(3): 480-489. doi: 10.1007/s10393-014-1006-z.

Phennicie, R.T.; Sullivan, M.J.; Singer, J.T.; Yoder, J.A. & Kim, C.H. (2010). Specific resistance to Pseudomonas aeruginosa infection in zebrafish is mediated by the cystic fibrosis transmembrane conductance regulator. Infect. Immun., 78(11): 4542-4550. doi: 10.1128/IAI.00302-10.

Pier, G. & Ramphal, R. (2005). Pseudomonas aeruginosa. Principles Pract. Infect. Dis., 6(2): 2587-2615.

Rocchetta, H.L.; Burrows, L.L. & Lam, J.S. (1999). Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev., 63: 523-553.

Tamura, Y.; Suzuki, S. & Sawada, T. (1992). Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice. Microbial Pathogenesis, 12(3): 237-244.

Watts, J.E.M.; Schreier, H.J.; Lanska, L.& Hale, M.S. (2017). The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs, 15(6): E158. doi: 10.3390/md15060158.

Yanong, R.P. (2003). Use of antibiotics in ornamental fish aquaculture. Univ. Fla. Coop. Ext. Serv., IFAS Ext.: 7pp.

Published

2019-12-31

How to Cite

Al-Mossawai, O. F., & Ali, A. H. (2019). Histopathological Changes in the Liver and Spleen of Common Carp Cyprinus carpio L. Challenge with Pseudomonas aeruginosa (Schroeter, 1872) Fed with Dietary Chitosan and Ciprofloxacin. Basrah J. Agric. Sci., 32(2), 193-207. https://doi.org/10.37077/25200860.2019.209

Issue

Section

Articles