Effect of Dietary Supplementing Cumin (Cuminum cyminum L.) on Meat Traits of the Broiler Chicks


  • Rauf H. Majid Department of Animal Sciences, College of Agricultural Engineering Sciences, Sulaimani University
  • Tariq Kh. M. Albashr Department of Animal Resource, College of Agriculture, Tikrit University
  • Arazu A. Hamma Department of Animal Sciences, College of Agricultural Engineering Sciences, Sulaimani University
  • Zaid Kh. Khidhir Department of Animal Resource, College of Agriculture, Tikrit University




Cumin, feed additive, Broiler chicks, Meat traits


This study was conducted to evaluate the dietary using of cumin as feed supplement on meat quality traits of the broiler chicken. Eight-day old broiler divided into 4 groups, 3 replicates (8 chicks/replicate) each for 45 days. Treatments included; (T1), basal diet without cumin or control, (T2), basal diet with 3 g. cumin. kg-1 of diet, (T3), basal diet with 6 g. cumin. kg-1 of diet, (T4), basal diet with 9 g. cumin. kg-1 of diet. At the end of this experiment after slaughtering all the chicks, samples were taken from breast and thigh meat. Results revealed that cumin supplementation did not significantly (p<0.01) affect moisture percentages of breast meat and protein percentages of thigh meat. Results also showed that use basal diet with 3 and 6 g.cumin. kg-1 of diet significantly (p<0.01) impact on meat water holding capacity and cooking loss percentages, while different cumin level impact on fat, ash percentages, pH value, TBA, TVB.N values, metmyoglobin, myoglobin value, copper, nickel, zinc, iron, magnesium, phosphorus and calcium concentrations of thigh meat,  as well as iron, magnesium, phosphorus, sodium and calcium concentrations of breast meat. Results conclude that using cumin as feed supplement in  3, 6 and 9 g.kg-1 level, improve most chemical and physical traits of meat.


Download data is not yet available.


Abbaspour, N.; Hurrell, R. & Kelishadi, R. (2014). Review on iron and its importance for human health. J. Res. Med. Sci.: Off. J. Isfahan Univ. Med. Sci., 19(2): 164-174.

Akyildiz, S. & Denli, M. (2016). Application of plant extracts as feed additives in poultry nutrition. SCI Papers, Ser. D. Ani. Sci.: LIX: 71-74.

Allison, P.D. (2010). Survival Analysis Using SAS: A Practical Guide, 2nd ed. SAS Press, Cary, N. Carolina: 337 pp.

Association of Official Analytical Chemists & Helrich, K. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists. Arlington, V.A.: 771pp.

Berrama, Z.; Temim, S.; Souames, S. & Ainbaziz, H. (2017). Growth performance, carcass and viscera yields, blood constituents and thyroid hormone concentrations of chronic heat stressed broilers fed diets supplemented with cumin seeds (Cuminum cyminum L.). Kafkas Univ Vet Fak Derg, 23(5): 735-742. https://doi.org/10.9775/kvfd.2017.17663.

De Martino, L.; De Feo, V.; Fratianni, F. & Nazzaro, F. (2009). Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat. Prod. Commun., 4(12): 1741-1750. https://doi.org/10.1177/1934578X0900401226

Diaz Carrasco, J.M.; Redondo, L.M.; Redondo, E. A.; Dominguez, J. E.; Chacana, A.P. & Fernandez Miyakawa, M.E. (2016). Use of plant extracts as an effective manner to control Clostridium perfringens induced necrotic enteritis in poultry. BioMed. Res. Int., 2016: 1-15. https://doi.org/10.1155/2016/3278359

Duncan, D. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1): 1-42. https://doi.org/10.2307/3001478. https://www.jstor.org/stable/3001478

Gagandeep, Dhanalakshmi, S.; Mendiz, E.; Rao, A.R. & Kale, R.K. (2003). Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems. Nutr. Cancer, 47(2): 171-180. https://doi.org/10.1207/s15327914nc4702_10

Hernández, B.; Sáenz, C.; Alberdi, C. & Diñeiro, J.M. (2015). Comparison between two different methods to obtain the proportions of myoglobin redox forms on fresh meat from reflectance measurements. J. Food Sci. Technol., 52(12): 8212-8219. https://doi.org/10.1007/s13197-015-1917-x

Hutton, L.A.; O'Neil, G.D.; Read, T.L.; Arest, Z.J.; Newton, M.E. & Macpherson, J.V. (2014). Electrochemical X–ray fluorescence spectroscopy for trace heavy metal Analysis: Enhancing X-ray fluorescence detection capabilities by four orders of Magnitude. Anal. Chem., 86(9): 4566-4572. https://doi.org/10.1021/ac500608d.

Ibrahim, H.M.; Abou-Arab, A.A. & Salem, F. M.A. (2010). Addition of some natural plant extracts and their effects on lamb patties quality. J. Food Technol., 8(3): 134-142. https://doi.org/10.3923/jftech.2010.134.142.

Johri, R. K. (2011). Cuminum cyminum and Carum carvi: An update. Pharmacogn. Rev., 5(9): 63-72. https://doi.org/10.4103/0973-7847.79101

Krzywicki, K. (1982). The determination of haem pigments in meat.Meat Sci., 7(1): 29-36. https://doi.org/10.1016/0309-1740(82)90095-X

Lassak, E. (1996), Encyclopedia of common natural ingredients used in food, drugs and cosmetics. Flavour Fragr. J., 11: 373-373. https://doi.org/10.1002/(SICI)1099-1026 (199611)11:6<373::AID-FFJ628>3.0.CO;2-5

Lo, M.N.; Damon, L.J.; Tay, J.W.; Jia, S. & Palmer, A.E. (2020). Single cell analysis reveals multiple requirements for zinc in the mammalian cell cycle. Elife, 9: 1-24. https://doi.org/10.7554/eLife.51107

Mahmood, S.; Rehman, A.; Yousaf, M.; Akhtar, P.; Abbas, G.; Hayat, K. & Shahzad, M.K. (2015). Comparative efficacy of different herbal plant’s leaf extract on haematology, ?intestinal histomorphology and nutrient digestibility in broilers. Adv. Zool. Bot., 3(2): 11-16. https://doi.org/10.13189/azb.2015.030201

Madhukar, C. (2013). Phytochemical screening of cumin seeds extract. Rep. Opin., 5(1): 57-58. https://doi.org/10.7537/marsroj050113.10

Malle, P. & Poumeyrol, M. (1989). A new chemical criterion for the quality control of fish: Trimethylamine/total volatile basic nitrogen (%). J. Food Prot., 52(6): 419-423. https://doi.org/10.4315/ 0362-028X-52.6.419

McDowell, L.R. (2003). Minerals in Animal and Human Nutrition. 2nd ed., Amsterdam, Elsevier Sci. 660pp.

Miraliakbari, H. & Shahidi, F. (2008). Antioxidant activity of minor components of tree nut oils. Food Chem., 111(2): 421-427. https://doi.org/10.1016/j.foodchem.2008.04.008

Moawad, S.A.; El-Ghorab, A.H.; Hassan, M., Nour-Eldin, H. & El-Gharabli, M.M. (2015). Chemical and microbiological characterization of Egyptian cultivars for some spices and herbs commonly exported abroad. Food Nut. Sci., 6(07): 643-659. https://doi.org/10.4236/fns.2015.67068

Murphy, M.A. & Zerby, H.N. (2004). Pre-rigor infusion of lamb with sodium chloride, phosphate, and dextrose solutions to improve tenderness. Meat Sci., 66(2): 343-349. https://doi.org/10.1016/S0309-1740(03)00109-8

Muthamma, M.K.S.; Dholakia, H.; Kaul T.P.; & Vishveshwaraiah, P. (2008). Enhancement of digestive enzymatic activity by cumin (Cuminum cyminum L.) and role of spent cumin as a bionutrient. Food Chem., 110: 678- 683. https://doi.org/10.1016/j.foodchem.2008.02.062

Rafiee, A.; Kheiri, F.; Rahimian, Y.; Faghani, M.; Valiollahi, M.R. & Miri, Y. (2014). The effect of ginger root (Zingiber officinale) and cumin (Cuminum cyminum) powder on performance, some haematological traits and intestinal morphology of broiler chicks. Res. Opin. Anim. Vet. Sci., 4(2): 96-100

Rajib, A., SaifulIslam, A.T.M.; Ahmed R.; Rahman, T.; Rahman, A. & Ismail A.B. (2016). Detection of chromium (Cr) using X-ray fluorescence technique and investigation of Cr propagation from poultry feeds to egg and chicken flesh. Am. J. Eng. Res., 5(7): 243-247. http://www.ajer.org/papers/v5(07)/ZF050702430247.pdf

Rao, R.R.; Platel, K. & Srinivasan, K. (2003). In vitro influence of spices and spice-active principles on digestive enzymes of rat pancreas and small intestine. Die Nahrung, 47(6): 408-412. https://doi.org/10.1002/food.200390091

Srinivasan K. (2018). Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects, Food Qual. Saf., 2(1): 1-16. https://doi.org/10.1093/fqsafe/fyx031

Wardlaw, F.B.; McCaskill, L.H. & Acton, J.C. (1973). Effect of postmortem muscle changes on poultry meat loaf properties. J. Food Sci., 38(3): 421-423. https://doi.org/10.1111/j.1365-2621.1973.tb01444.x

Warriss, P.D. (2000). Meat Science. An Introductory Text. New York: Cabi. Publ. Inc.: 312 pp. https://doi.org/10.4102/jsava.v71i4.731

Witte, V.C.; Krause, G.F. & Bailey, M.E. (1970). A new extraction method for determining 2?thiobarbituric acid values of pork and beef during storage. J. Food Sci., 35(5): 582-585. https://doi.org/10.1111/j.1365-2621.1970.tb04815.x

Zomrawi, W.B. (2013). Response of broiler chicks and laying hens to dietary ginger (Ziangbir officinal) root powder. Ph.D. Thesis Univ. Khartou:. 147pp.



How to Cite

Majid, R. H., Albashr, T. K. M., Hamma, A. A., & Khidhir, Z. K. (2020). Effect of Dietary Supplementing Cumin (Cuminum cyminum L.) on Meat Traits of the Broiler Chicks. Basrah J. Agric. Sci., 33(1), 159-171. https://doi.org/10.37077/25200860.2020.33.1.12




Most read articles by the same author(s)