Main Article Content

Abstract

In current COVID-19 pandemic, when there is no specific antiviral treatment and vaccine is available yet, many nutritional supplements have caught the attention to manage the disease. Lactoferrin is one of a natural nutritional supplement found in the milk of livestock mammals and has immunomodulation property due to its iron withholding ability and capacity to bind to multiple cellular receptors. The antiviral ability of lactoferrin has been evaluated against many viruses including SARS-CoV which is closely related to SARS-CoV-2 (causative agent of COVID-19). Furthermore, lactoferrin also possesses anti-inflammatory efficacy and can inhibit the circulating inflammatory cytokines (e.g. Interferon γ, interleukin (IL-) 1B, IL-6, IL-12) and chemokines (CCL2 and CXCL10) which are reported to be present in higher levels in COVID-19 patients. A particular research about exploring the potential of lactoferrin against SARS-CoV-2 is highly demandable because lactoferrin might prevent the SARS-CoV-2 from infecting the host cells due to its biological activities regarding antiviral immunity. We are hopeful that further research on evaluating the pharmacological effect of lactoferrin against SARS-CoV-2 will signify its role to combat COVID-19.

Keywords

Lactoferrin SARS-CoV-2 COVID-19 Immunomodulation Antiviral

Article Details

How to Cite
Azhar, J. ., Mohammadabadi, T. ., Babar, M. E. ., & Hussain, T. . (2020). Milk Lactoferrin: A Probable Immunological Agent Against SARS-CoV-2 : A Review. Basrah J. Agric. Sci., 33(2), 138–146. https://doi.org/10.37077/25200860.2020.33.2.12

References

  1. Al-Hatim, R. R., Al-Rikabi, A. K., & Ghadban, A. K. (2020). The Physico-chemical properties of bovine and buffalo whey proteins milk by using ultrafiltration membrane Technology. Basrah Journal of Agricultural Sciences, 33, 122-134. https://doi.org/10.37077/25200860.2020.33.1.10
  2. Al-Majali, A. M., Ismail, Z. B., Al-Hami, Y., & Nour, A. Y. (2007). Lactoferrin concentration in milk from camels (Camelus dromedarius) with and without subclinical mastitis. International Journal of Applied Research in Veterinary Medicine, 5, 120. http://jarvm.com/articles/Vol5Iss3/
  3. Anghel, L. (2014). Lactoferrin: analysis of the structure profile. Chemistry Journal of Moldova, 9, 99-106. https://doi.org/10.19261/cjm.2014.09(2).14.
  4. Berlutti, F., Pantanella, F., Natalizi, T., Frioni, A., Paesano, R., Polimeni, A., & Valenti, P. (2011). Antiviral properties of lactoferrin- A natural immunity molecule. Molecules, 16, 6992-7018. https://doi.org/10.3390/molecules16086992.
  5. Britigan, B. E., Lewis, T. S., Waldschmidt, M., McCormick, M. L., & Krieg, A. M. (2001). Lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. The Journal of Immunology, 167, 2921-2928. https://doi.org/10.4049/jimmunol.167.5.2921
  6. Bruni, N., Capucchio, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., Corona, A., & Dosio, F. (2016). Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules (Basel, Switzerland), 21. https://doi.org/10.3390/molecules21060752
  7. Cheng, J. B., Wang, J. Q., Bu, D. P., Liu, G. L., Zhang, C. G., Wei, H. Y., Zhou, L. Y., & Wang, J. Z. (2008). Factors affecting the lactoferrin concentration in bovine milk. Journal of Dairy Science, 91, 970-976. https://doi.org/10.3168/jds.2007-0689
  8. Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, 92, 418-423. https://doi.org/10.1002/jmv.25681
  9. Claeys, W. L., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., Dierick, K., & Vandenplas, Y. (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food Control, 31, 251-262. https://doi.org/10.1016/j.foodcont.2012.09.035
  10. Conesa, C., Sánchez, L., Rota, C., Pérez, M. D., Calvo, M., Farnaud, S., & Evans, R. W. (2008). Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150, 131-139. https://doi.org/10.1016/j.cbpb.2008.02.005
  11. El-Hatmi, H., Girardet, J., Gaillard, J., Yahyaoui, M. H., & Attia, H. (2007). Characterization of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Ruminant Research, 70, 267-271. https://doi.org/10.1016/j.smallrumres.2006.04.001
  12. Embleton, N., D., Berrington, J. E., Chris, W. M., & Cummings, S. S. (2013). Lactoferrin: Antimicrobial activity and therapeutic potential. Seminars in Fetal & Neonatal Medicine, 18, 143-149. https://doi.org/10.1016/j.siny.2013.02.001
  13. Furmanski, P., Li, Z. P., Fortuna, M. B., Swamy, C. V., & Das, M. R. (1989). Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity. Journal of Experimental Medicine, 170, 415-429. https://doi.org/10.1084/jem.170.2.415
  14. Gao, C. H., Dong, H. L., Tai, L., & Gao, X. M. (2018). Lactoferrin-containing immunocomplexes drive the conversion of human macrophages from M2-into M1-like phenotype. Frontiers in Immunology, 9, 37. https://doi.org/10.3389/fimmu.2018.00037
  15. Gonzalez-Chavez, S.A., Arevalo-Gallegos, S., & Rascon-Cruz, Q. (2009). Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents, 33, 301-308. https://doi.org/10.1016/j.ijantimicag.2008.07.020
  16. Gombart, A. F., Pierre, A., & Maggini, S. (2020). A Review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 12, 236. https://doi.org/10.3390/nu12010236
  17. Iglesias-Figueroa, B. F., Espinoza-Sánchez, E. A., Siqueiros-Cendón, T. S., & Rascón-Cruz, Q. (2019). Lactoferrin as a nutraceutical protein from milk, an overview. International Dairy Journal, 89, 37-41. https://doi.org/10.1016/j.idairyj.2018.09.004
  18. Ishii, K, Takamura, N., & Shinohara, M. (2003). Long-term follow-up of chronic hepatitis C patients treated with oral lactoferrin for 12 months. Hepatology Research, 25, 226e33. https://doi.org/10.1016/s1386-6346(02)00279-6
  19. Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., & Ranasinghe, P. (2020). Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes & Metabolic Syndrome, 14, 367–382. https://doi.org/10.1016/j.dsx.2020.04.015.
  20. Jenssen, H., & Hancock. R. E. W. (2009). Antimicrobial properties of lactoferrin. Biochimie, 91, 19-29. https://doi.org/10.1016/j.biochi.2008.05.015
  21. Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The Biology of Lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Frontiers in Immunology, 11, 1221. https://doi.org/10.3389/fimmu.2020.01221
  22. Kuchler, H., Cookson, C., & Neville, S. (2020). The $2 bn race to find a vaccine. Financial Times, 7. https://www.ft.com/content/e0ecc6b6-5d43-11ea-b0ab-339c2307bcd4
  23. Lang, J., Yang, N., Deng, J., Liu, K., Yang, P., Zhang, G., & Jiang, C. (2011). Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS one, 6 e23710. https://doi.org/10.1371/journal.pone.0023710
  24. Legrand, D., Elass, E., Carpentier, M., & Mazurier, J. (2006). Interactions of lactoferrin with cells involved in immune function. Biochemistry and Cell Biology, 84: 282-290. https://doi.org/10.1139/o06-045
  25. Legrand, D. (2012). Lactoferrin, a key molecule in immune and inflammatory processes. Biochemistry and Cell Biology, 90, 252–268. https://www.nrcresearchpress.com/doi/abs/10.1139/o11-056
  26. Legrand, D., & Mazurier, J. (2010). A critical review of the roles of host lactoferrin in immunity. Biometals, 23, 365-376. https://doi.org/10.1007/s10534-010-9297-1
  27. Lepanto, M. S., Rosa, L., Paesano, R., Valenti, P., & Cutone, A. (2019). Lactoferrin in aseptic and septic inflammation. Molecules, 24, 1323. https://doi.org/10.3390/molecules24071323
  28. Liao, Y., Jiang, R., & Lönnerdal, B. (2012). Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochemistry and Cell Biology, 90, 476-484. https://doi.org/10.1139/o11-075
  29. Loss, G., Depner, M., Ulfman, L. H., Van Neerven, R. J., Hose, A. J., Genuneit, J., & Weber, J. (2015). Consumption of unprocessed cow's milk protects infants from common respiratory infections. Journal of Allergy and Clinical Immunology, 135, 56-62. https://doi.org/10.1016/j.jaci.2014.08.044
  30. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., & Manson, J. J. (2020). Across Specialty Collaboration, U. COVID-19: Consider cytokine storm syndromes and immunosuppression. The Lancet, 395, 1033-1034.https://doi.org/10.1016/s0140-6736(20)30628-0
  31. Milewska, A., Zarebski, M., Nowak, P., Stozek, K., Potempa, J., & Pyrc, K. (2014). Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. Journal of Virology, 88, 13221-13230. https://doi.org/10.1128/jvi.02078-14
  32. Moore, S. A., Anderson, B. F., Groom, C. R., Haridas, M., & Baker, E. N. (1997). Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. Journal of Molecular Biology, 274, 222-236. https://doi.org/10.2210/pdb1blf/pdb
  33. Okubo, K., Kamiya, M., Urano, Y., Nishi, H., Herter, J. M., Mayadas, T., & Kurosawa, M. (2016). Lactoferrin suppresses neutrophil extracellular traps release in inflammation. E BioMedicine, 10, 204-215. https://doi.org/10.1016/j.ebiom.2016.07.012
  34. Orsi, N. (2004). The antimicrobial activity of lactoferrin: Current status and perspectives. Biometals, 17, 189-196. https://doi.org/10.1023/b:biom.0000027691.86757.e2
  35. Puddu, P., Valenti, P., & Gessani, S. (2009). Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie, 91, 11-18. https://doi.org/10.1016/j.biochi.2008.05.005
  36. Perdijk, O., van Splunter, M., Savelkoul, H. F., Brugman, S., & van Neerven, R. J. (2018). Cow’s milk and immune function in the respiratory tract: Potential mechanisms. Frontiers in Immunology, 9, 143. https://doi.org/10.3389/fimmu.2018.00143
  37. Queiroz, V. A. O., Assis, A. M. O., & Júnior, H. C. R. (2013). Protective effect of human lactoferrin in the gastrointestinal tract. Revista Paulista de Pediatria, 31, 90-95. https://doi.org/10.1590/s0103-05822013000100015
  38. Rawat, P., Kumar, S., Sheokand, N., Raje, C. I., & Raje, M. (2012). The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor. Biochemistry and Cell Biology, 90, 329-338. https://doi.org/10.1139/o11-058
  39. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 94, 91-98. https://doi.org/10.1016/j.jare.2020.03.005
  40. Shin, K., Wakabayashi, H., Yamauchi, K., Yaeshima, T., & Iwatsuki, K. (2008). Recombinant human intelectin binds bovine lactoferrin and its peptides. Biological and Pharmaceutical Bulletin, 31, 1605-1608. https://doi.org/10.1248/bpb.31.1605
  41. Sorensen, M., & Sorensen, S. (1939). Compte rendu des Travaux du Laboratoire de Carlsberg. The Proteins in Whey, 83, 432. https://doi.org/10.3406/crai.1939.85865.Stelwagen, K., Carpenter, E., Haigh, B., Hodgkinson, A., & Wheeler, T. T. (2009). Immune components of bovine colostrum and milk. Journal of Animal Science, 87, 3-9. https://doi.org/10.2527/jas.2008-1377
  42. Superti, F., Berlutti, F., Paesano, R., & Valenti, P. (2008). Structure and activity of lactoferrin -A multi-functional protective agent for human health. 1-32. In Fuchs, H., (Ed.). Iron Metabolism and Disease; Research Signpost: Kerala.
  43. Suzuki, Y. A., Lopez, V., & Lönnerdal, B. (2005). Lactoferrin. Cellular and Molecular Life Sciences, 62, 2560. https://doi.org/10.1007/s00018-005-5371-1
  44. Takayama, Y., Aoki, R., Uchida, R., Tajima, A., & Aoki-Yoshida, A. (2017). Role of CXC chemokine receptor type 4 as a lactoferrin receptor. Biochemistry and Cell Biology, 95, 57-63. https://doi.org/10.1139/bcb-2016-0039
  45. Valenti, P., & Antonini, G. (2005). Lactoferrin: an important host defence against microbial and viral attack. Cellular and Molecular Life Sciences, 62, 2576-2587. https://doi.org/10.1007/s00018-005-5372-0
  46. Van der Strate, W. A., Beljaars, L., Molema, G., Harmsen, M. C., & Meijer D. K. F. (2001). Antiviral activities of lactoferrin. Antiviral Research, 52, 225–239. https://doi.org/10.1016/s0166-3542(01)00195-4
  47. Wu, D., Lewis, E. D., Pae, M., & Meydani, S. N. (2019). Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Frontiers in Immunology, 9, 3160. https://doi.org/10.3389/fimmu.2018.03160
  48. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., & Niu, P. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733. https://doi.org/10.1056/nejmoa2001017