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Abstract: Climate change poses significant challenges to the agricultural sector, 
exacerbating water scarcity and intensifying the irrational utilization of water reserves.  In 
response to these pressing issues, Artificial Intelligence (AI) optimizes irrigation, predicting 
water quantity and quality to ensure optimal crop yields. AI-driven approaches mitigate the 
challenges of water scarcity, enhancing precision in irrigation management. This review 
explores recent AI applications in irrigation, focusing on three areas: AI-powered estimation 
of Crop Evapotranspiration (ETo), integration of AI with Interet of Things (IoT) for Smart 
Irrigation Systems (Smart-IS), and AI's role in forecasting water quality for irrigation. AI 
algorithms optimize water usage by quantifying water needs, enabling real-time monitoring, 
autonomous decision-making, and mitigating risks associated with poor water quality, thus 
enhancing crop productivity while minimizing environmental impacts. This review 
emphasizes AI's role in addressing water scarcity and optimizing irrigation in agriculture by 
utilizing different technologies to ensure sustainable water management and food security. 
Future researchers will find this review valuable for understanding AI's current impact on 
irrigation and identifying avenues for further innovation. 
Keywords: Climate Change, Artificial Intelligence, Internet of Things, Smart Irrigation System, Crop 
Evapotranspiration, Irrigation Water. 

Introduction 

In the wake of heightened awareness about the 
detrimental repercussions of human 
interventions in natural ecosystems, including 
deforestation, intensive use of water resources, 
industrial emissions, and other anthropogenic 

activities, humanity grapples with the 
profound impacts and consequences. One 
notable consequence of this interference is the 
catalyzation of climate change. Climate 
change denotes the notable and rapid 
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transformations in temperature, atmospheric 
carbon dioxide (CO2) levels, rainfall 
distribution, and the prevalence of severe 
climatic occurrences. These events encompass 
heat waves, droughts, floods, and irregular 
precipitation (Demem, 2023; Keutgen, 2023; 
G. Kumar et al., 2020). This environmental 
shift extends its influence into various sectors, 
with agriculture standing at the forefront of its 
impacts. It poses expressive challenges not 
only to natural biodiversity but also amplifies 
threats to crop productivity and food security 
(Mehraj et al., 2023). 

Water is an essential and indispensable 
resource which is important to support both 
crop production and the livelihood (Zhong et 
al., 2023). As the global population is 
predicted to attain 9.4–10.2 billion by 2050, 
the dynamics of water withdrawal and 
consumption are undergoing a profound 
transformation, a growing need for resources 
to support an evolving lifestyle and significant 
changes in water usage patterns are also 
expected as a result of this demographic shift 
(Musie & Gonfa, 2023). Irrigation entails 
supplying water to agricultural land to 
complement natural rainfall and ensure 
sufficient moisture for the development of 
crops. It enables farmers to grow crops in areas 
with insufficient natural water supplies, 
increasing agricultural productivity and food 
security. However, agriculture, being a crucial 
sector, requires significant water resources for 
irrigation (Akhare, 2023). The demand for 
agricultural irrigation constitutes a substantial 
portion, approximately 90%, of the total water 
usage worldwide (Siebert et al., 2010). It is 
noteworthy that, although various sectors 
contribute to the withdrawal of water, 
agriculture remains the largest user, 
necessitating the optimization of agricultural 
water resources (Musie & Gonfa, 2023). 

As climate change and global population 
growth influence water distribution and 
availability worldwide, challenges in the 
quantity and quality of accessible water are 
becoming increasingly evident (Kirby & 
Mainuddin, 2022). Also, higher temperatures 
coupled with changes in precipitation 
distribution result in an increased rate of soil 
water evaporation and plant transpiration, 
which in turn, leads to a higher water demand 
for crops and natural vegetation (Bussi et al., 
2021; Ragab, 2023). 

Moreover, these climate-induced changes 
can markedly affect the irrigation needs of 
agricultural crops, which ultimately influence 
grain production (Amanullah et al., 2020; 
Lamichhane, 2022). This scenario underscores 
the profound impact of population growth and 
changing global living standards on water 
usage for agriculture (Kumar S et al., 2023). 
Against this backdrop, projections indicate a 
concerning 11% increase in irrigation water 
withdrawal by 2050, raising alarms about the 
sustainability of this essential resource 
(Sandhu, 2016). Aside from its critical 
function in crop irrigation, agricultural 
water—which comes from a variety of 
artificial and natural sources—will be essential 
in meeting the growing demand for food 
production. With agriculture shaping our water 
landscape and, consequently, our sustainable 
future, urgent reviews of water management 
strategies are imperative (Musie & Gonfa, 
2023). Moreover, The inappropriate use of 
water for irrigation compounds challenges 
related to water scarcity, defined by inefficient 
practices leading to waste and depletion of 
water resources (Mekonnen & Hoekstra, 
2016), thus aggravating water scarcity and 
posing detrimental consequences to the 
environment and socio-economic 
development. 
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In response to these myriad challenges 
exacerbated by the escalating of agricultural 
and environmental repercussions of 
conventional practices, humanity has initiated 
a journey to confront these issues through the 
adoption of innovative technologies. The 
imperative to enhance food production by 70% 
underscores the critical role of agricultural 
sustainability in meeting this demand (Roy et 
al., 2024). As traditional agricultural practices 
grapple with the challenges caused by the 
growing population and urbanization (Radić & 
Cogoljević, 2022), the imperative to meet this 
rising demand for food becomes apparent. 
Traditional agriculture, which has historically 
acted as the basis of progress for generations, 
now faces challenges owing to the rapid 
increase in population and the scarcity of water 
reservoirs, this underscores the necessity for a 
shift towards intelligent agriculture (Lakshmi 
et al., 2023; Lytov, 2023). 

Intelligent agriculture, also known as 
Agriculture 4.0, leverages cutting-edge 
technologies such as AI to boost productivity, 
including the management of irrigation and 
overall quality (Ayaz, Aytekin & Akgün, 
2019; Khurape & Kirve, 2019). The 
incorporation of AI applications in plant 
production can optimize food production. AI 
in agriculture can significantly improve 
efficiency, reduce waste, and enhance water 
safety and quality, while simultaneously 
reducing production costs and promoting 
sustainable farming practices (Abd El-Aziz & 
El-Abeid, 2023; Taneja et al., 2023).  This 
evolution finds its culmination in what is 
termed “Precision agriculture”, also known as 
"Smart Farming," this approach aims to 
minimize inefficiencies in resource utilization, 
including water, fertilizer, and energy (Anand 
et al., 2023). The advent of AI in agriculture 
entails the assimilation of different 
technologies, robots, data analytics, IoT, 

cameras, affordable sensors, drones, and 
widespread internet connectivity (Babakhouya 
et al., 2023; Gorobets, 2022; Hossen, 2023). 
This combination offers farmers actionable 
insights and real-time data, optimizing 
decision-making across various aspects 
including irrigation systems, fertilizer 
application, and nutrient deficiencies, 
ultimately leading to an increase in 
productivity and empowering farmers to 
promptly intervene and avert potential crop 
losses (Subeesh & Mehta, 2021; Lu et al., 
2023; Taneja et al., 2023). To achieve these 
purposes, AI comprising Machine Learning 
(ML) and Deep Learning (DL) algorithms, is 
pivotal and plays a critical role in enabling 
data-driven decisions and enhancing 
agricultural productivity (Lakshmi et al., 2023; 
Hussein et al., 2024). 

In recent years, a myriad of studies has 
underscored the profound impact of 
automation and AI on optimizing crop yields 
and minimizing resource consumption across 
diverse agricultural domains. This review 
specifically delves into the pivotal role that AI 
plays in enhancing irrigation management, 
focusing on both quantity and quality aspects. 
Through a comprehensive analysis of 
advancements in various studies on the 
integration of AI in irrigation, aiming to 
improve quality and reduce water waste, this 
paper aims to elucidate the AI algorithms and 
technologies employed for precision irrigation 
and predicting irrigation water quality. 

This paper is divided into the following 
sections: 

• Section I outlines the methodology 
employed for data collection, laying a 
robust foundation for subsequent sections. 

• Section II delves into AI-powered ETO 
estimation, offering insights into the 
progress made within this field. 



Hamdaoui et al. / Basrah J. Agric. Sci., 37(2), 354-380, 2024 

357 
 

• Section III explores the synergy between 
IoT and AI, showcasing their collaborative 
role in fostering smart irrigation systems.  

• Section IV addresses the intervention of AI 
in predicting irrigation water quality, 
offering an in-depth exploration of related 
studies and methodologies. 

• In Section V, we summarize the findings of 
our literature review and present our final 
thoughts. 

By following this structured approach, the 
review seeks to enhance comprehension of the 
diverse applications of AI in improving 
irrigation techniques. 

Methodology 

Literature search  

The initial step involved an exhaustive search 
of academic databases, including but not 
limited to PubMed, IEEE Xplore, 
ScienceDirect, and Google Scholar, to identify 
studies focusing on the incorporation of AI in 
irrigation management and irrigation water 
quality prediction. Utilizing key terms such as 
'AI in Irrigation Management,' 'Smart 
Irrigation Systems,' and 'AI for Irrigation 
Water Quality Prediction,' our search aimed to 
cover this specific domain comprehensively. 

Inclusion criteria  

The criteria specifically targeted studies 
addressing the application of AI in irrigation 
ensuring the inclusion of recent and pertinent 
contributions in the realm of AI's role in 
irrigation management and water quality 
prediction. 

Organizing and presenting findings  

The findings are presented coherently, with 
dedicated sections addressing AI-powered 
irrigation management and AI applications in 
predicting irrigation water quality. This 
thematic organization, complemented by 

chronological insights, provides a detailed 
narrative review of the present status of AI 
integration within these particular aspects of 
irrigation. 

Documentation  

Every step of the methodology process was 
meticulously documented to ensure 
transparency. The documentation includes 
essential details such as title, authors, 
publication year, study objectives, 
methodologies employed, major findings, and 
technological contributions discussed, 
specifically to enhancing irrigation 
management and water quality prediction. 

Ai-powered ETo estimation 

ETO is an index that reflects the volume of 
water crops lost through soil evaporation and 
plant transpiration Fig. (1) (Dingman, 2015; 
Tausif et al., 2023). The ETO serves a crucial 
function in hydrological studies, irrigation 
scheduling, and facilitating effective water 
resource management by serving as a 
fundamental factor in calculating the water 
requirements of crops (Ferreira et al., 2019).  

Fig. (1): Evapotranspiration ETO 

Precise ETO assessments are crucial in 
many fields, such as climatological research, 
developing and scheduling irrigation systems, 
assessing environmental consequences, and 
simulating soil moisture dynamics. 
Nevertheless, there are significant expenses 
and difficult obstacles associated with 
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measuring ETO directly (Almorox, Quej & 
Martí, 2015). Lysimeters are frequently used to 
directly estimate ETO however, due to their 
high maintenance and operating costs, their 
use for ETO estimation is very restricted 
(López-Urrea et al., 2006). Many choose to use 
mathematical models as a more practical 
option, frequently using reference 
evapotranspiration or prospective 
evapotranspiration (PET) as key variables for  
ETo estimation (Almorox, Quej & Martí, 
2015). The most widely accepted 
mathematical model for ETo is Penman-
Monteith (Eq.1) (Allen et al., 1998). 

Equation1:Penman-Monteith-equation (FAO56-
PM eq) 

𝑬𝑬𝑬𝑬𝑶𝑶

=
𝟎𝟎.𝟒𝟒𝟎𝟎𝟒𝟒∆ (𝑹𝑹𝒏𝒏 − 𝑮𝑮) +  𝜸𝜸 𝟗𝟗𝟎𝟎𝟎𝟎

𝑬𝑬+𝟐𝟐𝟐𝟐𝟐𝟐
𝒖𝒖𝟐𝟐(𝒆𝒆𝒔𝒔 − 𝒆𝒆𝒂𝒂)

∆ + 𝜸𝜸(𝟏𝟏 + 𝟎𝟎.𝟐𝟐𝟒𝟒 𝒖𝒖𝟐𝟐) .
 

where; ETo is daily referenced ET (mm 
day-1), Δ is the slope of the relationship 
between saturation vapor pressure and mean 
daily air temperature (kPa °C-1), Rn is the net 
radiation at the crop surface (MJ m-2 day-1), 
G is the soil heat flux density (MJ m-2 day-1), 
γ is the psychrometric constant which depends 
on the altitude of each location (kPa °C-1), T 
is the mean daily air temperature (°C), u2 is the 
wind speed at 2 m height (m s-1); es is the 
saturation vapor pressure (kPa); ea is the actual 
vapor pressure (kPa). 

Despite its acceptance, applying the FAO-
Penman-Monteith equation (FAO56-PM eq) at 
the field scale is challenging, due to the 
method's demands for a multitude of 
meteorological parameters, making it 
impractical for individual farms (Valiantzas, 
2015; Mohammadi & Mehdizadeh, 2020). The 
Hargreaves-Samani (HS) Method is put 
forward as an alternate solution, requiring a 
more limited set of variables (George H. 

Hargreaves & Zohrab A. Samani, 1985; Yin et 
al., 2020). However, studies (Valipour, 2013, 
2015) have indicated that the (HS) method 
tends to undervalue ETO in various scenarios 
(Yin et al., 2020). The Hargreaves-Samani 
(A&G) and (HS) equations demonstrated 
reduced accuracy in predicting daily 
evapotranspiration when contrasted with the 
FAO56-PM eq (Koç & Erkan Can, 2023). 

Due to climate change, arid regions have 
grappled with challenges related to shifting 
weather patterns, notably a decrease in 
precipitation. After a series of droughts, these 
changes have led to enormous economic losses 
(Smith & Katz, 2013; Prein et al., 2016; 
Djaman, Mohammed & Koudahe, 2023). This 
has led to a discernible rise in the demand for 
real evapotranspiration ETO, both on a daily 
and seasonal basis. High temperatures, strong 
wind velocity, and comparatively little 
seasonal rainfall are some of the factors 
contributing to this increased demand 
(Mohammed et al., 2019; Djaman, 
Mohammed & Koudahe, 2023). Precise ETO 
data are necessary for effectively managing 
water resources, enhancing crop water 
productivity, and innovating water 
management techniques. They play a crucial 
role in guaranteeing a steady supply of water 
for farming in arid areas (Djaman, Mohammed 
& Koudahe, 2023). 

Related works 

(Yu et al., 2020) investigated ETO estimation 
in China using diverse combinations of 
meteorological parameters. They evaluated 
three Machine Learning models (ML) models 
Artificial Neural Network (ANN), Support 
Vector Regression (SVR), and Extreme 
Learning Machine (ELM), highlighting SVR 
and ELM's effectiveness in handling 
incomplete data. Besides, the study results 
revealed that integrating relative humidity 
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(RH), maximum and minimum temperatures 
(Tmax), (Tmin), wind speed (U2), and solar 
radiation (Rs) into SVR and ELM models 
yielded the most accurate ETO estimations, 
indicating their significant potential in 
practical applications. Impacting the 
evaporation rates of water from both soil and 
plants, temperature significantly influences 
ETO. Elevated temperatures increase 
evaporation and transpiration rates, resulting in 
elevated ETO levels; conversely, elevated 
humidity levels reduce evaporation and 
transpiration, resulting in lower ETO values 
(Abdel-Fattah et al., 2023). To estimate daily 
sugar beet evapotranspiration, (Yamaç, 2021) 
explored the efficacy of four AI- algorithms k-
Nearest Neighbor (k-NN), Support Vector 
Machine (SVM), Random Forest (RF), and 
Adaptive Boosting (AB)— Utilizing eight 
different sets of input variables derived from 
field experiments in Çumra, Konya in Turkey. 
The performance of the AI models was 
assessed against a model constructed 
following the FAO approach. Despite using 
fewer input variables, all the models have 
demonstrated satisfactory performance. 
However, with the input combination crop 
coefficient Kc, Tmax, Tmin, Rs, and U2, SVM 
model outperformed the other models and 
highlighted the suitability to estimate ETO.  
Another study (Katimbo et al., 2023) in the 
United States aimed to the prediction of ETO 
and crop water stress index (CWSI) which are 
two essential factors that affect directly the 
proportion of water in the plant, by evaluating 
different AI algorithms and their ensembles: 
ANN, Long Short-Term Memory (LSTM), RF, 
SVM, k-NN, Categorical Boosting (CatBoost), 
three Ensembls of  ML models, Multiple 
Linear Regression (MLR). The study focused 
on the improvement of water sustainability 
through intelligent irrigation scheduling based 
on an automated Irrigation Decision Support 

System (IDSS). The datasets used in this study 
include the Normalized Difference Vegetation 
Index (NDVI), canopy temperature (Tc), and 
soil moisture data obtained from irrigated and 
non-irrigated maize fields. The predictions are 
compared against established benchmarks, 
including the FAO56-PM eq ETO and 
Jackson's theoretical (CWSI). Utilizing the 
inputs: RH, Tmax, ∑SWC @ 0.9 m (soil 
moisture at 0.9 m depth), and Tmin, one of the 
ML ensembles which is Stacked Regression 
(Stacked-Regr) demonstrated superior 
performance in predicting ETO. On the other 
hand, CatBoost emerged as the best model in 
(CWSI) prediction incorporating features such 
as T°, Rs, vapor pressure deficit VPD, RH, U2, 
and ∑SWC @ 0.9 m. The study emphasizes the 
potential of these models in the establishment 
system for IDSS incorporating the Crop Water 
Stress Index and soil water feedback. (Quej et 
al., 2022) demonstrated that the temperature-
based AI models provide better results in 
estimating the daily ETO of Mexico's warm 
sub-humid climate, in circumstances where 
solely temperature records are accessible, by 
comparing the performance of three models 
SVM, Adaptive Neuro-Fuzzy Inference 
System (ANFIS), and CatBoost with the 
conventional Hargreaves-Samani method. The 
outperformed is the SVM, as the analysis 
explores the impact of RH and rainfall upon 
the accuracy of the model in warm sub-humid 
regions studied.  The ETO value may differ 
based on the climatological conditions of the 
region, whether it is arid, semi-arid, or humid 
(Gao et al., 2017). Within China, specifically 
in arid and humid regions,  (Yan et al., 2021) 
focused on estimating daily ETO where long-
term or complete climatic variables may be 
unavailable. Extreme gradient boosting 
(XGB), and the whale optimization algorithm 
(WOA), are combined to create a hybrid 
model. Which is trained and tested at four 
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stations in both humid and arid regions. The 
study considered seven partial configurations 
of meteorological variables, including RH, 
Tmax, and Tmin, extra-terrestrial radiation 
(Ra), U2, relative sunshine duration (n/N), and 
Rs. These results put into light the fact that 
Local WOA-XGB models outperformed the 
simplified FAO56-PM eq, mainly under arid 
and humid climates in terms of accuracy. This 
study will also outline the dominant variables 
by highlighting U2 as the most important 
during arid climates and n/N during humid 
climates. Similarly, this study will outline the 
most influential variables: U2 during arid 
climates and n/N during humid climates. In 
addition, one more study Similarly, another 
study (Liu et al., 2021) in China focused on 
ETO estimation in humid regions by applying 
XGB and RF models with an assessment of 
various strategies for data and period 
segmentation. The results showed that the RF 
model showed better performances than XGB 
and highlighted the importance of Rs for 
accurate predictions over southern China. The 
recommended approach involves using the RF 
model with a 30-year dataset as a promising 
alternative to the FAO56-PM eq for daily ETO 
estimation in regions with Inadequate climatic 
data in areas of high humidity in the south of 
China. In Iran, specializing in arid and semi-
arid climates (Samadianfard & Valizadeh 
Kamran, 2023) centered on estimating 
evapotranspiration with an innovative 
approach that combines ML techniques, 
including RF and Multi-Layer Perceptron 
(MLP), with remote sensing data from Land 
Remote Sensing (Landsat) and Moderate 
Resolution Imaging Spectroradiometer 
(MODIS) satellites. Input parameters include 
monthly averages of  Land Surface 
Temperature (LST) and NDVI. Models are 
evaluated against the FAO56-PM eq 
incorporating various input parameters 

“scenarios”. The research identifies the 
optimal model configuration (The RF-4 and 
MLP-4 models, scenario 4) using MODIS 
LSTMOD and NDVIMOD for precise 
monthly ETO estimation. Lastly, comparing 
monthly ETO estimation in arid and semi-arid 
climates, the MLP model yields the best 
performance with a high correlation 
coefficient in semi-arid climates. These 
findings highlight the paramount role of 
satellite imagery and ML in refining water 
management strategies, offering valuable 
insights applicable to environmental science 
across diverse climatic conditions. 

Egypt, one of the countries which are 
characterized by arid regions, (Abdel-Fattah et 
al., 2023) found that the ANNs estimate the 
ETO more precisely in comparison with the 
Stepwise Regression (SWR) referencing the 
FAO56-PM eq. The study identifies crucial 
variables affecting ETO in arid regions such as 
Tmax, RH, Rs, and U2. In parallel line 
(Makwana, Tiwari & Deora, 2023) compared 
the accuracy of ANN with ELM, M5 Tree, and 
MLR to estimate ETO against the FAO-56 PM 
Eq. The findings indicate that the ANN 
outperformed across different indicators, 
demonstrating their practical and reliable 
applicability for accurate ETO estimation. 
Alternatively, in Iran, (Bidabadi et al., 2022) 
results indicate that the ANFIS model 
demonstrated superior performance in areas 
with arid and semi-arid climates compared to 
the ANN. Particularly with average 
temperature and wind speed inputs. (Heramb 
et al., 2023) used four ML algorithms RF, 
SVM, Light Gradient Boosting Decision 
(LightGBDT), and Extreme Gradient Decision 
Trees (XGDT), to estimate the ETO in 11 
regions with arid and semi-arid climates in 
India. FAO56-PM eq-derived ETO served as 
the focal point for model adjusting. Conversely 
to other research, they concluded that models 
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using all inputs did best, and those with only 
temperature data were less accurate. 
Additionally, the SVM model proved superior 
even with fewer inputs, which showed their 
effectiveness. In particular, U2 and Rs turned 
out to be the most important parameters to 
achieve accurate results. These studies (Table 
1) have utilized AI for a dual objective: firstly, 
to identify the precise combination of 
parameters necessary for accurate ETO 
estimation and, secondly, to calculate ETO 
precisely. This aims to determine the exact 
irrigation water needed, enhancing accuracy 
and reducing wastage compared to traditional 
methods. However, AI models assessing ETO 
based on reference methods may have 
limitations in accuracy and practicality. 
Statistical metrics like R²: Coefficient of 
determination; RMSE: Root Mean Square 
Error; MAE: Mean Absolute Error; NSE: 
Nash-Sutcliffe Efficiency are used to evaluate 
their reliability. It is quite difficult to obtain 
ample meteorological data, especially in 
remote or mountainous areas, which may 
compromise the accuracy of the models (Irvem 
& Ozbuldu, 2023). Input variables should be 
optimally selected to reduce inaccuracy and 
represent spatial and temporal variability 
under varying climatic conditions. This 
suggests that the reliability of ETo estimation 
models will change with a change in the 
specific climatic region being studied 
(Makwana, Tiwari & Deora, 2023). 

Calculating ETO in real time is feasible, as 
demonstrated by (Hu et al., 2022), and 
involves utilizing an Internet of Things (IoT) 
architecture to directly sense environmental 
conditions in crop fields for ETO rate 
determination. The model utilizes directly 
sensed temperature and humidity data from the 
crop fields in Pakistan spanning 2015 to 2021. 
Four ML algorithms Gaussian Naive Bayes 
(GNB), SVM, k-NN, and ANN are compared 

to assess their accuracy in estimating ETO rates. 
k-NN model demonstrates superior 
performance, achieving 92% accuracy and 
outperforming other models. The solution 
complies with the Penman-Monteith 
methodology and is tailored to developing 
intelligent irrigation techniques that could 
optimize water usage and maintain crop yields. 
The proposed approach, by integrating IoT 
technology, enables real-time observations and 
acquisitions of data on environmental 
parameters in the crop field for better accuracy 
of ETO estimation. 

Over and above, IoT can be a better choice 
instead of the ETo process, as proven by 
(Kumar S et al., 2023) in India. Their research 
was conducted to determine the most efficient 
irrigation technique by comparing the 
performance of IoT-based soil moisture 
monitoring (IoT-SM) with an 
evapotranspiration-based strategy. Sweet corn 
plants' growth parameters were the basis for a 
comparison between these two techniques. 
Two irrigation regimes were employed for the 
method of monitoring soil moisture based on 
IoT technology.  

The first regime was to maintain soil 
moisture at 43.5% of soil field capacity, while 
the second regime was to maintain soil 
moisture at 34.8%. Meanwhile, for the ETO-
based method, irrigation was sophisticated to 
achieve 100% ETO. IoT-SM device was 
developed and implemented in the fields 
throughout which the soil data were collected 
by different sensors (Temp-sensor, HR-sensor, 
as well as soil moisture sensors) in real 
conditions using the ESP8266 Wi-Fi Module. 
The program was developed using C and C++ 
programming languages. to manage the 
operation of the IoT-SM. 
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Table (1): AI-Powered ETO Estimation. 
Author (year) Country Objective Technology/model Results Contribution to Water Management 

(Wu et al., 
2020) China Estimate ETo using 

ML models SVM and ELM SVM and ELM showed significant 
potential in ETo estimation. 

Provides insights into accurate ETo estimation, aiding 
efficient water management in agriculture 

(Yamaç, 2021) Turkey Evaluate AI algorithms 
for sugar beet ETo k-NN, SVM, RF, AB SVM outperformed with a specific 

input combination. 
Offers a method for precise sugar beet irrigation, contributing 
to water-use efficiency 

(Katimbo et al., 
2023)) 

United 
States 

Predict ETo and CWSI 
using various ML 

models 

Stacked-Regr, 
CatBoost 

Stacked-Regr for ETo and CatBoost 
for CWSI showed superior 

performance. 

Supports smart irrigation practices, optimizing water use and 
maintaining crop yields 

(Quej et al., 
2022) Mexico 

Compare temperature-
based AI models for 

daily ETo 

SVM, Adaptive 
Neuro-Fuzzy, 

CatBoost 

SVM outperformed in warm sub-
humid climate. 

Enhances understanding of temperature-based models for ETo 
in specific climates 

(Yan et al., 
2021) China Estimate daily ETo 

using XGB and WOA XGB, WOA Local WOA-XGB outperformed 
FAO-56 PM models. 

Provides an effective model for daily ETo estimation, 
improving water management decisions 

(Liu et al., 
2021) China 

Estimate ETo in humid 
regions using ML 

models 
Random Forest RF with a 30-year dataset promising 

for daily ETo estimation. 
Offers a reliable alternative to traditional methods for daily 
ETo estimation in humid regions 

(Samadianfard 
& Valizadeh 

Kamran, 2023) 
Iran 

Estimate 
evapotranspiration 

using ML with remote 
sensing 

RF, MLP 
RF-4 and MLP-4 models with 

MODIS data for precise monthly 
ETo estimation. 

Utilizes remote sensing for precise monthly eto estimation, 
aiding water management strategies 

(Abdel-Fattah 
et al., 2023) Egypt 

Compare ANNs with 
stepwise regression for 

ETo estimation 
ANN ANNs more precise than stepwise 

regression. 
Improves accuracy in ETo estimation, contributing to 
effective water management in agriculture 

(Makwana et 
al., 2023) India 

Compare ANN, ELM, 
M5 Tree, MLR for ETo 

estimation 
ANN ANN outperformed other models 

across different indicators. 
Demonstrates the practical applicability of ANN for accurate 
ETo estimation, aiding water management 

(Bidabadi et al., 
2022) Iran 

Compare ANFIS and 
ANN for ETo 

estimation 
ANFIS 

ANFIS superior, especially with 
average temperature and wind speed 

inputs. 

Highlights the effectiveness of ANFIS in arid and semi-arid 
regions, guiding water management decisions 

(Heramb et al., 
2023) India 

Estimate 
evapotranspiration 
using ML models 

SVM SVM demonstrated superior 
performance. 

Recommends SVM models for accurate evapotranspiration 
estimation, crucial for water management in arid regions. 

(Hu et al., 
2022) Pakistan Predict ETo rates using 

IoT and ML algorithms k-NN k-NN demonstrated superior 
accuracy. 

Introduces IoT for real-time ETo rate prediction, enhancing 
water management practices at the farmer level. 

(Kumar S et al., 
2023) India 

Compare IoT-SM and 
ETo-based irrigation 

methods 
IoT 

IoT-SM 43.5% sensor-based drip 
irrigation led to water savings and 

yield improvement. 

Validates IoT-based soil moisture monitoring as a water-
saving irrigation strategy with improved crop yield. 
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The soil moisture content, soil temperature, 
relative humidity, and temperature are then 
stored on the ThingSpeak IoT platform every 
two minutes. The study results show that the 
IoT-SM 43.5% sensor-based drip irrigation 
technique led to significant benefits in terms of 
water saving and yield improvement, 
compared to the other methods (ETO-based 
irrigation and the IoT-SM34.8%). This 
strategy led to about 11% saving of water and 
accomplishing 12.05% growth in crop 
production. So, we can conclude that IoT also 
acts as an effective tool for deciding accurate 
irrigation levels in the fields, giving more 
excellent real-time output, especially in water 
usage and crop production 

IoT and AI: Smart Irrigation Systems 

The concept of the IoT pertains to a system of 
interconnected devices and objects capable of 
exchanging data and executing functions via 
the Internet. It enables the online connection 
and communication of physical objects, 
allowing for automated data collection, 
interaction between objects, and engagement 
with humans (John, Lakshmi & Kuncharam, 
2023; Salama et al., 2023). The inception of 
the IoT arose from the idea that all digital 
entities would be interconnected and operating 
intelligently, evolving since its inception in 
2000 (Chae, 2019). The primary goal of this 
technology is to enhance human life by 
connecting and optimizing all accessible 
resources, including humans, information, and 
technology (Khalid, 2023). Several studies 
have offered reviews or surveys about 
pertinent technologies and obstacles in the 
deployment of IoT-based services and 
applications (He et al., 2016; Mujawar and 
Mujawar, 2019; Perwej et al., 2019; 
Sathiyanathan, 2020; Bhuiyan et al., 2021; 
Ameri et al., 2022; S. Kumar et al., 2023) 

Additionally, IoT integrates AI  and ML to 
develop intelligent and more effective systems 
capable of real-time responsiveness. AI and 
IoT are swiftly evolving technologies that are 
transforming diverse industries and daily 
activities (Law and Policy, 2023; Thakur, 
Pathan & Ismat, 2023). Applications of AI and 
IoT extend across various sectors, such as 
healthcare, agriculture, industry, and more 
(Singh & Singh, 2020). In the agriculture field, 
leveraging IoT and AI technologies holds the 
promise of positively transforming 
conventional agriculture practices. This 
implementation holds considerable potential in 
addressing the pressing challenges confronted 
by traditional agriculture (Alreshidi, 2019). 
This union of technologies offers a solution to 
boost the efficiency and effectiveness of water 
utilization in agriculture (Akhare, 2023). 
Additionally, IoT and AI can be used to 
oversee irrigation practices to optimize crop 
yield while reducing water usage, using 
sensors and advanced algorithms to collect and 
analyze data on plant growth. Besides the 
Intelligent Irrigation Systems based on IoT and 
AI can ensure the right quantities of water for 
plants, improving water management in 
agriculture (Bhandari et al., 2023; Hamdoon & 
Zengı̇n, 2023). The importance of IoT for 
smart irrigation has been proven in numerous 
studies. The recent advances in IoT 
technologies permit precise data collection 
even more spatially and empower higher levels 
of automation (Togneri et al., 2023). Due to the 
real-time monitoring of various parameters, 
the deployment of IoT systems usually 
generates a large amount of data and by 
analyzing this and taking into account 
variables including crop variety, soil 
characteristics, and weather patterns, the 
models can predict the optimal watering needs 
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of specific crops at different stages of growth 
(Obaideen et al., 2022). 

Related works 

Vij et al. (2020) in Singapore, addressed the 
imperative need for technological 
advancements in the agriculture industry, 
especially in the context of water scarcity and 
efficient farm maintenance. The proposal 
focuses on automating irrigation systems using 
the IoT for a cost-effective and accurate 
resolution. A monitoring system is envisaged 
to combat issues like excessive irrigation, soil 
erosion, and irrigation issues specific to crops. 
A wireless sensor network (WSN) deployed 
across various areas of the agricultural land is 
suggested, transmitting data to a common 
server. ML algorithms, including Support 
Vector Regression (SVR) and Random Forest 
Regressor (RFR), enhance irrigation 
predictions based on crop types and weather 
conditions. The research concludes by 
highlighting the economic and sustainable 
nature of the proposed IoT-based automation. 
Another study in United Arab Emirates,  Al-
Ali et al. (2019) present An IoT-enabled solar 
energy system designed for smart irrigation to 
address global challenges of water scarcity and 
power shortages. Following this, 
another research study conducted in Jordan,  
Khalifeh et al. (2021), focused on designing 
and implementing an intelligent irrigation 
system using IoT, AI, and the LORAWAN 
(Long Range Wide Area Network) 
communication technology.   In this work, a lot 
of emphasis has been placed on the weather 
prediction mechanism, which becomes very 
essential to the irrigation prediction system. By 
accurately predicting the meteorological 
variables like temperature, humidity, and 
atmospheric pressure, the system can make a 
proper decision regarding optimum water 
irrigation. For that, the research proposes to 

use the Wind Driven Optimization Least 
Square Support Vector Machine (WDO-LS-
SVM) algorithm for weather prediction. The 
designed system is based on the following four 
main components by using Internet of Things 
(IoT) technology: 

1-The sensors that measure the humidity, 
temperature, and pressure. 

2- The LORAWAN Gateway which acts as a 
bridge between the LoRaWAN sensor nodes 
and the network server. 

3-The open-source LoRaWAN network 
ChripStack framework. 

4- Grafana cloud is used as a Database and 
Cloud integration. 

Sensors collect the data and are sent to the 
LoRaWAN gateway through a LoRa 
communication link. After making decisions 
concerning the data, the results are sent back to 
the irrigation system through the same LoRa 
communication link. The major findings of 
this study have pointed out the importance of 
accurate weather forecasting in achieving 
effective irrigation. Integrating artificial 
intelligence, LoRaWAN communication 
technology, and the WDO-LS-SVM algorithm, 
the system showed promising results in 
optimizing water irrigation. Another Smart-IS 
was developed by Tace et al. (2022) in 
Morocco, utilizing ML algorithms and IoT 
technology. The system integrates sensors of 
soil moisture, temperature, and humidity, 
including rain sensors, which are connected to 
an Arduino board for real-time data collection. 
They used Node-Red and MongoDB for 
storing and pre-processing data. ML models 
like Neural Networks (NN), SVM, logistic 
Regression (LogReg), Naïve Bayes (NB), and 
k-NN were trained for the prediction of 
irrigation, and the highest accuracy achieved 
by k-NN is 98.3%. From the study, it is 
possible to achieve a web application for 
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system visualization and data supervision. 
Incorporating the IoT into the Smart-IS 
presents a viable option for enhancing water 
management also in small plots, open gardens, 
and green spaces as indicated by Jain (2023) in 
India, where the study demonstrated the 
effectiveness of IoT-enabled drip irrigation, 
integrating web/android apps and sensors for 
soil moisture monitoring. The system, 
consisting of three layers (sensing, internet, 
and application), utilizes Arduino and 
NodeMCU for data communication to the 
cloud. An Android/web application facilitates 
user interaction and ensures optimal watering 
for gardening purposes. In Peru, Alanya-
Arango et al. (2022) introduced a method for 
recommending fluid ounces tailored for 
embedded devices to optimize water usage in 
agriculture. Leveraging IoT sensors capturing 
atmospheric and surface data, the information 
is processed using ML on a cloud-based server 
to provide water use recommendations to 
farmers. The recommender system, developed 
internally, demonstrates resilience and 
flexibility. Testing on datasets from the 
National Institutes of Technology (NIT) 
Bhubaneswar confirms the effectiveness of the 
proposed method in optimizing water usage 
with minimal farmer intervention. R et 
al.(2023) in India introduced an AI and 6G-
IoT-based autonomous irrigation system for 
smart agriculture. The system uses a prediction 
algorithm on a microprocessor, using IoT-
acquired weather data to predict rainfall and 
climatic changes. The system will 
automatically irrigate the fields according to 
the environmental conditions and the exact 
measurement of soil moisture, hence reducing 
irrigation water wastage. It also disseminates 
weather information to farmers and converts 
conventional irrigation into an effortless smart 
agriculture model. The experimental setup 
entails collection of sensor data collection and 

a hybrid ML technique for precise soil 
moisture prediction. Real-time monitoring and 
data visualization are enabled through the 6G-
IoT network. The proposed framework is 
effective under diverse environmental 
conditions, which allows it to be one of the 
potential frameworks in the future for smart 
agriculture systems. Routis & Roussaki (2023) 
introduced a smart IoT-based precision 
irrigation system in agriculture, utilizing 
microprocessors, a Single-Board Computer 
(SBC), and various sensors, including those for 
soil moisture, atmospheric humidity, 
temperature, and ultraviolet radiation. The 
study has shown the effectiveness of the 
system through experiments by making 
appropriate decisions on irrigation and has 
incorporated an RNN-LSTM for forecasting 
and ML for smart agriculture. Similarly, 
ongoing research activities were involved with 
scale-up of the prototype over maize 
agricultural fields in Northern Greece and an 
intelligent actuation application, which will be 
developed using artificial intelligence and 
focused on water conservation and 
maintaining crop health. Tawfeek, Alanazi, & 
Ahmed (2022) in Saudi Arabia set up an 
intelligent fertigation scheme by utilizing 
Adaptive Particle Swarm Optimization (PSO) 
and ANN to enhance olive cultivation. The 
suggested PSO-ANN system, which has two 
units in the output layer for irrigation and 
fertilization decisions, freely accommodates 
new datasets, without re-establishment. Using 
IoT tools, including sensors for temperature, 
soil moisture, wind, and humidity, the system 
autonomously makes decisions on irrigation 
and fertilization, contributing to increased 
efficiency and reduced human intervention. 
Similarly, Nazar & Altalb (2022) in Turkey 
utilizes the ANN with real-time hardware 
applications within the framework of IoT. The 
researchers use FC-28 soil and DHT11 
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humidity/temperature sensors to gather 
environmental data. The system is designed 
using Arduino and Node MCU ESP 8266 
microcontrollers for automating the water 
pump control (ON/OFF) and irrigation water 
flow that depends upon inputs from sensors. 
The IoT-based agricultural irrigation is 
automated using ANN, through automatically 
adjusting parameters to efficiently manage 
water according to the environment. Back to 
Saudi Arabia, Yanes (2023) presents the 
design of an intelligent greenhouse based on 
Internet of Things technology and a one-
dimensional Convolutional Neural Networks 
(CNN) architecture for adaptive control of 
agricultural processes.  The core crops on 
which this framework is based are cucumber, 
pepper, tomato, and bean. IoT implementation 
allows real-time monitoring and control, 
ensuring optimal conditions for plant 
development through fertilization, irrigation, 
lighting, and temperature management. 
Experimental results demonstrate the 
effectiveness of the proposed system with 1D-
CNN attaining an accuracy value of 97.56%. 
The long-term advantages were more 
highlighted in water usage reduction, enhanced 
crop quality, higher crop yield, and decreased 
labor cost. Lakshmi et al. (2023) in India, 
introduce a cost-effective and adaptable 
irrigation strategy for smart agriculture, 
utilizing ML algorithms. Using MongoDB and 
the Node-RED platform, a sensor array 
measures soil moisture, temperature, and rain 
to optimize plant development. Comparing 
models, k-NN stood out with a 98.6% 
identification rate. An online tool integrates 
model predictions with sensor data for 

improved environmental visualization and 
control. Aruna et al. (2023), present ML-
Driven Smart-IS with Arithmetic Optimization 
Algorithm (AOAML-Smart-IS) technique in 
an IoT framework. AOAML-Smart-IS 
employs a MLP classification model to 
evaluate irrigation needs, incorporating vital 
parameter tuning through the (AOA). 
Experimental assessments on agricultural data 
underscore the superior efficacy of the 
AOAML-Smart-IS technique in irrigation 
classification. 

These studies (Table 2) and others show 
that the use of different hardware modules, 
communication technologies, and storage 
systems in Smart-IS further enhances 
irrigation efficiency and effectiveness. The 
earlier studies were specifically conducted to 
explore and address various aspects related to 
the management and control or prediction of 
irrigation water, and forecast water 
requirements, also aimed to enhance the 
general effectiveness and sustainability of 
irrigation methods utilizing the different 
algorithms of the AI-power and IoT 
technology. Optimum irrigation and a good 
crop harvest require not only the consideration 
of precision irrigation techniques but also the 
quality of water as a whole. Precision irrigation 
is undoubtedly critical in applying water in a 
controlled and efficient manner, allowing for 
water-saving and healthier plants. However, 
the influence of water quality on agricultural 
success should not be underestimated. 
Irrigation water quality has a significant 
impact on soil quality, plant growth, and crop 
yield or plant produce, in general.
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Table (2): IoT and AI: Smart-IS 

Author Country Objective Technology/model Results Contribution to water management 

(Vij et al., 2020) Singapore Addressing water scarcity and 
efficient farm maintenance. 

IoT for automating irrigation systems, WSN, 
ML algorithms SVR, RFR 

Cost-effective IoT automation system addresses 
over-irrigation, soil erosion, and crop-specific 

irrigation in a healthy way 

Improve irrigation efficiency, reduce water 
wastage, and ensure sustainability of agriculture 

(Al-Ali et al., 
2019) 

United Arab 
Emirates 

Introduces an IoT-powered solar 
irrigation system to combat global 

water scarcity and power 
shortages. 

IoT, System-on-a-chip controller, WiFi, Solar 
cells 

Solar-powered system tested with remote 
monitoring and control. Very user-friendly website. 

Understandable and accessible for farming 

Consuming minimal conventional power supply, 
reducing the need for human intervention at 
regular intervals, and contributing toward 

efficient irrigation techniques 

(Khalifeh et al., 
2021) Jordan 

Implementing a smart irrigation 
system using IoT, AI, and 
LORAWAN with weather 

forecasting focus. 

IoT, AI, LORAWAN, WDO-LS-SVM 
algorithm, Sensors, LoRaWAN Gateway, 

ChripStack, Grafana Cloud 

Highlights importance of accurate weather 
forecasting for efficient irrigation. System utilizes 

WDO-LS-SVM algorithm 

Promises water irrigation optimization with AI, 
LORAWAN, and WDO-LS-SVM. Reduces 

water wastage through accurate weather-based 
decisions 

(Tace et al., 
2022) Morocco 

Development and Deployment of 
an AI-Powered Smart-IS by (ML 
algorithms) and IoT technology. 

IoT, ML: NN,SVM, LogReg, NB, k-
NN),Sensors, Arduino, Node-Red, MongoDB 

k-NN model achieved 98.3% recognition rate. Web 
app for environment supervision 

Enhances water management in small plots, open 
gardens, green spaces, using IoT-based smart 
irrigation. k-NN model's accuracy improves 

irrigation efficiency 

(Jain, 2023) India 
Implementation of IoT-enabled 
drip irrigation for small surfaces 
using Web/Android applications. 

IoT, Sensors, Microcontroller, NodeMCU, 
Arduino, Cloud, Android/Web application 

The system ensures optimal water delivery for 
gardening by monitoring soil moisture conditions 

Improves water management in small-scale 
irrigation, providing precise control through IoT 

technology 

(Alanya-Arango 
et al., 2022) Peru 

Introducing an Embedded Device 
for Efficient Water Use in 

Agriculture. 
IoT sensors, ML, Cloud-based server The recommender system optimizes water usage 

with minimal farmer intervention. 
Enhances water management in agriculture by 
providing efficient water-use recommendations 

(R et al., 2023) India 
Introducing an AI and 6G-IoT-

based autonomous irrigation 
system for smart agriculture. 

AI, 6G-IoT, Prediction Algorithm, IoT, ML Reduced water wastage, effective in different 
conditions 

Improves water management through reduced 
wastage and adaptability 

(Routis & 
Roussaki, 2023) 

Northern 
Greece 

Introducing a revolutionary smart 
IoT-based prototype system for 

precision irrigation in agriculture 

Microprocessors, SBC, Various Sensors, RNN-
LSTM, ML 

Effective informed irrigation decisions, ongoing 
work in scaling up 

Improves water conservation and crop health 
with AI-enabled irrigation decisions 

(Tawfeek, 
Alanazi & 

Ahmed, 2022) 
Saoudi Arabia 

Introducing a smart agriculture 
approach using Adaptive PSO and 
ANNs to enhance olive irrigation 

and fertilization 

PSO-ANN system, IoT Tools Autonomous decisions on irrigation and 
fertilization, increased efficiency 

Contributes to water efficiency and reduces 
human intervention through smart irrigation and 

fertilization decisions 

(Nazar & Altalb, 
2022) Turkey 

Automate water pump control 
(ON/OFF) and manage irrigation 

water 
ANN, IoT (Fc-28 soil sensor, DHT11 sensors) Automated water pump control, and dynamic 

adjustment for efficient irrigation 

Contributes to water efficiency through 
automated irrigation based on real-time 

environmental conditions 

(Yanes, 2023) Saudi Arabia 

Development of a smart 
greenhouse utilizing IoT and a 1D-

CNN for adaptive control of 
agricultural operations 

IoT, 1D-CNN 
Real-time monitoring, improved crop quality, 

reduced water usage, increased yield, lower labor 
costs. 

Enhances water management through precise 
control of irrigation, optimizing conditions for 

crop growth. 

(John, Lakshmi 
& Kuncharam, 

2023) 
India 

Introduce a cost-effective and 
adaptable irrigation strategy for 
smart agriculture utilizing ML 

algorithms 

MongoDB, Node-RED 
k-NN model with a 98.6% identification rate, an 

online tool for improved environmental 
visualization and control 

Enhances water management through optimized 
irrigation based on soil moisture, temperature, 

and rain data 
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AI in Irrigation water quality  

The pollution of irrigation water is a matter of 
great concern in agricultural areas. In addition, 
many studies (Şener & Varol, 2020; Lin et al., 
2023; Shah et al., 2023; Lin et al., 2023) 
reported that some heavy metals, including 
Plomb, Cadmium, Chromium, and Manganese, 
were found to be higher than the acceptable 
limits in irrigation water. These heavy metals 
have the propensity to cross the permissible 
threshold of irrigation water prescribed by 
different authorities, and organizations such as 
the Food and Agricultural Organization 
(Uddin et al., 2022). In addition, irrigation 
using polluted water could impact various 
properties of soils, including hydraulic 
conductivity, density, and porosity (Sulaeman, 
Arif, & Sudarmadji, 2018). Hence, there is a 
compelling necessity to estimate and predict 
water quality using the power of AI. The need 
for AI-powered methods to estimate and 
predict Irrigation Water Quality (IWQ) arises 
for several reasons. Firstly, traditional 
techniques for water quality assessment are 
costly and challenging, especially for farmers 
in emerging countries (Gad et al., 2023; 
Nguyen et al., 2023). ML and ANN algorithms 
have emerged as effective tools to forecast 
parameters related to water quality 
(Jayaraman, Nagarajan & Partheeban, 2022; 
Nguyen et al., 2023). 

Related works 

The study presented by Ubah et al. (2021) 
aimed to predict one-year water quality in Ele 
Rivers, Nigeria, focusing on irrigation 
purposes using ANN modeling. It targeted four 
water quality parameters pH, Total Dissolved 
Solids (TDS), Electrical Conductivity (EC), 
and Sodium (Na) at four different locations. 
Monthly data were collected from these 
locations and analyzed using various methods. 
The ANN model, trained by supervised feed-

forward back-propagation, predicted water 
quality parameters reasonably well, based on 
statistical metrics such as R2 and RMSE. 
However, TDS, EC, and Na values were 
always found above the Food and Agriculture 
Organization benchmarks for IWQ at some 
sampling point, although pH values fell within 
permissible ranges. In Egypt, precisely in the 
Nile River (Gad et al., 2023) focused on 
assessing and predicting water quality for 
agricultural purposes. Physicochemical 
parameters T°, pH, EC, TDS, K+, Na+, Mg2+, 
Ca2+, Cl−, SO4

2−, HCO3
−, CO3

2−, and NO3
− 

were recorded at 51 superficial water sites. 
ANN and partial least square regression (PLSR) 
models, along with geographic information 
system (GIS) tools, were utilized to predict 
IWQI and other indicators. The findings 
demonstrated the effectiveness of integrating 
physicochemical features, water quality 
indices, ANN, PLSR models, and GIS tools to 
assess the appropriateness of superficial water 
for irrigation. IWQI results indicated that 
nearly 98% of samples fell within the 
unrestricted category, and about two percent 
falling into the low restriction area for 
irrigation. 

Groundwater plays a crucial role in meeting 
various human needs and can serve as a 
reliable water source for irrigation, particularly 
in regions where surface water sources may be 
insufficient or unreliable. Especially, in 
regions marked by dry and semi-dry conditions, 
groundwater often serves as the sole irrigation 
source. Consequently, analyzing and assessing 
the IWQI emerge as valuable tools for 
effective water resources oversight (M’nassri 
et al., 2022). Approximately 20% of the 
world's groundwater is utilized for irrigation, 
highlighting its critical role in supporting 
agricultural practices. Furthermore, regular 
monitoring and testing of groundwater quality 
are essential to detect any potential 
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contamination and take necessary remedial 
actions (Ghosh & Bera, 2023). In the research 
conducted by Taşan (2022) in Turkey, 
groundwater suitability for irrigation was 
assessed using seven parameters: sodium 
adsorption ratio (SAR), residual sodium 
carbonate (RSC), Kelly index (KI), percentage 
of sodium (Na%), magnesium ratio (MR), 
potential salinity (PS), and permeability index 
(PI). Data from 37 locations were analyzed 
using advanced modeling techniques: ANN 
and ANFIS models. The ANN model showed 
superior performance in estimating SAR, RSC, 
Na%, and KI compared to PS, MR, and PI. It 
proved effective for groundwater quality 
assessment in the study area may be useful 
where data availability is limited. Still, it is 
recommendable to increase the number of 
sampling sites, taking the samples at various 
periods. El Bilali et al. (2021) employed ML 
models to forecast IWQ parameters, 
specifically addressing challenges faced by 
farmers. The study predicts parameters such as 
TDS, PS, SAR, Exchangeable Sodium 
Percentage (ESP), Magnesium Adsorption 
Ratio (MAR), and RSC) utilizing physical 
inputs like EC, T°, and pH. Four ML models: 
Adaboost, RF, ANN, and SVR were developed 
and assessed using data from the Berrechid 
aquifer in Morocco. Results indicate that 
Adaboost and RF outperform SVR and ANN, 
yet ANN and SVR exhibit higher capability to 
generalize and reduce sensitivity to the inputs. 
The study recommends ML models for real-
time, low-cost groundwater quality monitoring 
for irrigation uses. In parallel using only 
physical parameters as inputs, Yu et al. (2022) 
addressed the challenge of limited data for vast 
regions with diverse surface conditions, 
employing data-based models such as SVM, 
RF, ANN, and ELM. The study examines 
models for estimating TDS, PS, and SAR in 
the Zhangye Basin, NW China, highlighting 

their strong performance with physical 
parameters like T°, pH, EC, and dissolved 
oxygen. EC and pH are identified as key 
factors. SVM, RF, and ELM models excel with 
physical parameters, suggesting their cost-
effective utility for IWQI estimation. In the 
Nand Samand catchment, India, Dimple et al. 
(2023) concentrated on the application of ML 
models for IWQI forecasting, providing a cost-
effective solution for farmers. Six models 
(REGD, REGD-Bagging, REGD-RSS, 
REGD-AR, REGD-M5P, and REGD-RF) 
were developed and tested for predicting 
(soluble sodium percentage (SSP), magnesium 
hazards (MH), Kelly's ratio (KR), and SAR), 
by the analyze of eleven physicochemical 
variables from 95 wells pH, EC, TDS, Ca2+, 
Mg2+, Na+,  K+, Cl−, CO3

2−, HCO3
− and SO4

2−. 
The REGD-M5P showed the best fit for 
predicting irrigation indices. The study 
highlighted the ability of ML models to bring 
improvement in parameters of irrigation water 
quality and provided very vital insights for 
farmers and rapid decision-makers. Lap et al. 
(2023) investigated an ML-based approach for 
estimating the WQI in the An Kim Hai 
irrigation system, Vietnam. The conventional 
approaches are more time-consuming because 
many water quality parameters need 
evaluation. Different ML algorithms such as 
LR, MLP, SVM, DT, and RF, are implemented 
as well as feature selection methods. Results 
show that the RF model, using Coliform, 
Dissolved Oxygen (DO), Turbidity, and Total 
Suspended Solid (TSS) as the main parameters, 
achieves Water Quality prediction. Al-
Shourbaji & Duraibi (2023) proposed  
(IWQP4Net), a CNN model developed for 
effective (IWQP). The model is compared with 
the LR, SVR, and k-NN models, by showing 
better performance in terms of different 
metrics. The study utilized historical data from 
the United States Geological Survey, focusing 
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on predicting (pH) values for the next day in 
37 water quality monitoring stations in 
Georgia, USA.  (IWQP4Net) demonstrated 
superior performance, suggesting its potential 
for precision agriculture. Seven models were 
used by Mokhtar et al. (2022) to reach the 
same goal, estimating IWQ in Egypt using ML 
models: SVM, XGB and RF, also four 
Multiple Regression models: PCR, PLS and 
Ordinary Least Square Regression (OLS). The 
aforementioned models were utilized to 
predict the water quality index for 105 water 
samples, focusing on six commonly 
recognized standards for evaluating the IWQI: 
SSP, SAR, RSC, PS, PI, and KR, utilizing EC, 
Na+, Ca2+, and HCO3

− as input variables. Upon 
analyzing the model outputs based on the 
statistical measures RMSE and SI, the research 
concluded that the SW model demonstrated 
superior performance in predicting the IWQI. 
Also, the models developed, especially SVR, 
had good results but SW had slightly better 
performance. Their results revealed that, based 
on model predictions and analysis, the studied 
area was unsuitable for irrigation until treated. 
The water quality parameters exceeded the 
acceptable limits for irrigation purposes. In 
compliance with this, Derdour et al. (2023) 
assessed groundwater quality within the dry 
region of Adrar, Algeria for irrigation purposes, 
using AI techniques like SVM and k-NN to 
predict the IWQI based on hydrochemical 
parameters. Input data include five parameters 
EC, Na, SAR, Cl-, and HCO3

−. Of 166 
groundwater samples, over 57.23% are 
unsuitable for irrigation. SVM with 
normalized data achieves optimal prediction 
accuracy (94.2% for training, 100% for 
testing). The study highlights AI's potential for 
comprehensive groundwater quality 
assessment in arid regions, guiding effective 
water management strategies. 

To reflect a comprehensive and rigorous 
approach toward the assessment of 
groundwater quality, Hussein et al. (2023) 
utilized a broad spectrum of parameters that 
included EC, pH, Nephelometric Turbidity 
Unit (NTU), TDS, Alkalinity (ALK), Total 
Hardness (TH), HCO3

−, Cl−, SO4
2−, Ca2+, Mg2+, 

Na2+, k+, NO3, F, Fe, and As. These parameters 
were the foundation on which data were 
collected and, hence, analyzed. These 
parameters were chosen with care to give a 
holistic assessment of Sakrand, Sindh province, 
Pakistan. The key objective was to check the 
suitability of 80 groundwater samples 
efficiently, accurately, and precisely for 
irrigation purposes. To achieve this, four 
classifiers, namely SVM, k-NN, ET, and 
Discrimination Analysis (DA), were adopted 
and compared. It was aimed to improve the 
effectiveness of IWQI prediction, shorten 
computation time, and reduce errors that could 
occur in the computations of sub-indices.  The 
linear SVM classifier demonstrated the highest 
accuracy, proving its effectiveness for creating 
IWQI models and suggesting further research 
avenues. Similarly, the work of  M’nassri et al. 
(2022) focused on calculating the IWQI for the 
Sidi El Hani aquifer in central-eastern Tunisia 
considering many parameters such as TDS, EC, 
pH, major ions Ca2+, Mg2+, Na+, K+, HCO3

−, 
Cl−, and SO4

2−, and qualitative parameters 
SAR, Na, MAR, RSC, and PI. The proposed 
method was effective through the ANN and 
MLR models, based on 49 groundwater 
samples, the study indicated good water 
quality. Both ANN and MLR models 
performed well, although the best prediction 
accuracy was achieved by the ANN model.  
The presented ANN model is deemed to be 
consistent and sufficient and will undoubtedly 
provide critical insights for making irrigation 
water management decisions in the aquifer 
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under study and possibly in other semi-arid 
regions. 

In contrast to using multiple parameters, 
Docheshmeh Gorgij et al. (2023) focused 
solely on SAR as a critical criterion for 
assessing irrigation water quality. Using data 
from 101 sampling points over 18 years, they 
trained an LSTM model to predict SAR for 
2020. The model accurately predicted SAR, as 
evidenced by low MAPE and RMSE values, 
indicating close agreement with observed 
values. Around 22% of the region showed 
moderate to non-acceptable water quality for 
irrigation, particularly near residential areas, 
suggesting human activities as contributors to 
groundwater quality decline. To address the 
need for continuous monitoring of 
groundwater quality for efficient smart 
irrigation, Raje et al. (2022) proposed a system 
for continuous groundwater quality 
monitoring and smart irrigation. Their system 
utilizes custom pre-processing methods, lab 
samples, and field sensors to create a dataset 
and predict IWQI in India. Achieving 95% 
accuracy, the system offers real-time 
surveillance of IWQI via a user interface, 
benefiting farmers in remote areas. 

Conclusion 

The proposed investigation delves into the 
systematic exploration of AI techniques within 
the agricultural domain, specifically focusing 
on the critical areas of irrigation including 
“Irrigation Water Management” and 
“Irrigation Water Quality”. The findings 
underscore AI's pivotal role in addressing 
critical challenges and revolutionizing 
traditional agricultural practices. The first part 
of the review focused on the precise estimation 
of Evapotranspiration ETO through various AI 
techniques employed in different countries. 
The ability to accurately gauge ETO, directly 
influencing water availability in agricultural 

parcels, signifies a breakthrough in sustainable 
water management. The integration of AI with 
the Internet of Things IoT in "Smart Irrigation 
System" is highlighted in the second part, 
showcasing transformative potential, and 
enabling real-time data utilization to 
revolutionize decision-making. Finally, the 
study underscores AI's capacity to predict 
irrigation water quality, thereby promoting 
healthy crop production. These technologies 
represent a pivot to more resource-effective 
and sustainable agricultural methodologies 
through reducing human errors and optimizing 
resource use. The use of artificial intelligence 
and advanced machinery for efficiency meets 
the needs of water reduction with the assurance 
of superior quality, which is quite an issue 
where water resources are restricted.  

Further, the review is a deep source for all 
stakeholders in the agricultural sector, 
including policy, research, and practice. It 
explains what is afforded by AI-enabled 
solutions in irrigation and offers a relevant 
understanding of how technology has been 
altering water quality and management 
methods. The knowledge gained from this 
study will enable the stakeholders to employ 
AI-enabled solutions that will contribute to a 
resilient and sustainable agricultural sector.  
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Table (3): AI in Irrigation Water Quality. 

Author(year) Country Objective Technology/model Results Contribution to Water Management 

(Gad et al., 2023) Egypt 

Assess and forecast Nile River water quality for 
agriculture in Egypt using physicochemical 

parameters, IWQI indices, ANN, PLSR models, 
and GIS 

ANN, PLSR, GIS tools 
Effectively predict IWQI and assess surface-water 

suitability for irrigation. 98% samples in no restriction 
category, 2% in low restriction 

Comprehensive evaluation aids in identifying 
suitable surface-water sources for irrigation, 
contributing to water quality management 

(Taşan, 2022) Turkey 
Evaluate groundwater suitability for irrigation 

with seven parameters. Develop ANN and 
ANFIS prediction models 

ANN, ANFIS 
Accurate groundwater quality predictions for irrigation. 
ANN outperformed ANFIS in estimating SAR, RSC, 

PS, and KI 

Valuable tool for assessing groundwater quality, 
especially in areas with limited or no available data 

(El Bilali et al., 
2021) Morocco Forecast IWQ parameters employing ML 

models, addressing farmer challenges Adaboost, RF, ANN, SVR 
Adaboost and RF outperform SVR and ANN; ANN and 
SVR show higher generalization and lower sensitivity 

to input variables 

ML models, especially ANN and SVR, predict 
irrigation water quality, guiding optimized water 
management by farmers 

(Yu et al., 2022) China 
Accurate groundwater quality estimation for 
efficient irrigation, addressing challenges of 

limited data in diverse regions 
SVM, RF, ANN, ELM 

Robust performance of SVM, RF, and ELM models 
with physical parameters; EC and pH identified as 

crucial factors; Superiority of models with only 
physical parameters 

Data-based models like SVM, RF, and ELM 
provide robust and cost-effective estimation of 
irrigation water quality indexes in data-limited 
regions, aiding efficient water management 

(Dimple et al., 
2023) India Employing ML models for predecting IWQI, 

providing a cost-effective solution for farmers 

REGD, REGD-Bagging, 
REGD-RSS, REGD-AR, 
REGD-M5P, REGD-RF 

REGD-M5P excels in predicting irrigation indices, 
showcasing ML's potential in enhancing IWQ 

parameters; Recommended for superior prediction 
accuracy 

ML models, especially REGD-M5P, provide a cost-
effective solution for forecasting irrigation water 
quality indices, aiding farmers and fast decision-
makers in efficient water management 

(Lap et al., 2023) Vietnam Calculate WQI in An Kim Hai irrigation system 
ML algorithms :LR, MLP, 

SVM, DT, RF, feature 
selection 

RF model achieves best accuracy using Coliform, DO, 
Turbidity, and TSS as key parameters. Cost-effective 

alternative for WQI calculation, reducing input 
parameters 

ML-based method for efficient WQI calculation in 
irrigation systems 

(Al-Shourbaji & 
Duraibi, 2023) USA Develop IWQP4Net for efficient IWQP IWQP4Net CNN, LR, SVR, 

k-NN 
IWQP4Net outperforms LR, SVR, and k-NN in various 

metrics 
The potential application in precision agriculture, 
showing better performance in the WQ prediction 

(Mokhtar et al., 
2022)) Egypt 

Estimate irrigation water quality using seven 
models (SVM, XGB, RF, SW, PCR, PLS, OLS) 

with six criteria 

(ML) (SVM, XGB, RF), 
Regression Models (SW, 

PCR, PLS, OLS) 

SW model excels in IWQI prediction; AI models, 
especially SVR, show promising results. The surveyed 

region's water is unsuitable for irrigation without 
treatment 

Identifying the inadequacy of water for irrigation 
purposes and recommending if further interventions 
or treatments are necessary to make it suitable 

(Derdour et al., 
2023) Algeria 

Assess groundwater quality in Adrar, Algeria, 
for irrigation using AI techniques (SVM, KNN) 

to predict IWQI based on hydrochemical 
parameters 

SVM, k-NN 
Over 57.23% of groundwater samples are unsuitable for 
irrigation. SVM achieves 94.2% training, 100% testing 

accuracy 

Demonstrating AI's potential for comprehensive 
groundwater quality assessment in arid regions, 
guiding effective water management strategies 

(E. E. Hussein et 
al., 2023) Pakistan Assess groundwater quality for irrigation using 

SVM, k-NN, ET, and DA classifiers SVM, k-NN, ET, DA 
Linear SVM classifier proved most effective with high 

prediction accuracies for both training and testing 
dataset 

Demonstrating the effectiveness of linear SVM for 
creating precise WQI models, providing insights for 
evaluating water suitability 

(M’nassri et al., 
2022) Tunisia Calculate IWQI  using ANN and MLR models ANN, MLR 

Both ANN and MLR models performed effectively, 
with the ANN model showing the highest prediction 

accuracy 

An efficient way of estimating IWQI, it is 
worth providing insights on irrigation water 
management in  semi-arid regions 

(Docheshmeh 
Gorgij et al., 

2023) 
Iran 

Predict the (SAR) using LSTM model for 
assessing irrigation water quality based on 18-

year historical data 
LSTM Accurate SAR predictions for 2020; around 22% of the 

area showed non-acceptable WQ for irrigation 

Outlines the precision of LSTM models in 
predicting SAR, which helps identify areas where 
WQ is un-acceptable for better water management 

(Raje et al., 2022) India develope a system for real-time monitoring of 
WQI 

Custom preprocessing 
method, lab samples, files 
sensors, trained algorithm 

System achieves 95% accuracy in predicting WQI. User 
interface enables real -time monitoring providing 

valuable information on groundwater suitability for 
irrigation, even in remote locations 

Real-time WQI monitoring system, providing 
farmers with important information about the 
suitability of irrigation water 
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 ثورة في الزراعة: مراجعة شاملة للري الدقیق وتوقع جودة المیاه باستخدام الذكاء الاصطناعي 
 

  ھاجر حمداوي1  یونس أحسنة2 ایناس حامدي3 ھناء القدوري4 و نور الدین كودان1 
 الإنتاج الزراعي، التكنولوج�ا الحیو�ة والبیئة، وجدة، المغربجامعة محمد الأول، مختبر تحسین  1

 جامعة غرب بر�تاني، مختبر علوم وتقن�ات المعلومات والاتصال والمعرفة  ، بر�ست، فرنسا2
 لقن�طرة، المغرب ا  ، �ل�ة العلوم،مختبر البیولوج�ا والصحة جامعة ابن طفیل، 3

 تكنولوج�ا المعلومات والاتصالات الذ��ة، وجدة، المغربجامعة محمد الأول، مختبر 4

الرشید  :صستخلالم غیر  الاستخدام  وز�ادة  الم�اه  ندرة  تفاقم  إلى  یؤدي  مما  الزراعي،  للقطاع  �بیرة  تحد�ات  المناخ  تغیر  �مثل 
على تحسین أنظمة الري من خلال التنبؤ �كم�ات الم�اه   (AI)، �عمل الذ�اء الاصطناعيالضرور�ةلمواردها. استجا�ةً لهذه التحد�ات  

وجودتها لضمان تحقیق إنتاج�ة مثلى للمحاصیل. تعتمد هذه المراجعة على استكشاف تطب�قات حدیثة للذ�اء الاصطناعي في مجال  
ت�خر تقدیر  رئ�س�ة:  ثلاثة محاور  على  التر�یز  مع  المحاصیل-الري،  الذ�اء  (ETo) نتح  تكامل  الاصطناعي،  الذ�اء  �استخدام 

، ودور الذ�اء الاصطناعي في التنبؤ �جودة م�اه الري. (Smart-IS) في أنظمة الري الذ��ة  (IoT)الاصطناعي مع إنترنت الأش�اء
الب�انات في الوقت   المائ�ة، ومراق�ة  تسهم خوارزم�ات الذ�اء الاصطناعي في ترشید استخدام الم�اه من خلال تحدید الاحت�اجات 

 .نتاج�ة الزراع�ة و�قلل الآثار البیئ�ةالفعلي، واتخاذ القرارات الذات�ة، مع تقلیل المخاطر المرت�طة �سوء جودة الم�اه، مما �حسن الإ
تؤ�د هذه المراجعة أهم�ة الذ�اء الاصطناعي في معالجة مشكلة ندرة الم�اه وتحسین أنظمة الري في الزراعة �استخدام تقن�ات مبتكرة 

لي للذ�اء الاصطناعي في  لضمان إدارة مستدامة للم�اه وتحقیق الأمن الغذائي. �ما تشكل مرجعًا هامًا لل�احثین لفهم التأثیر الحا 
 .مجال الري وتحدید مجالات التطو�ر المستقبل�ة

 .نتح المحاصیل، میاه الري-تغیر المناخ، الذكاء الاصطناعي، إنترنت الأشیاء، نظام الري الذكي، تبخر الكلمات المفتاح�ة: 


