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Abstract: The primary objective of this paper was to develop an artificial neural 
network (ANN) simulation environment and mathematical models for predicting with 
high accuracy soil compression parameters. The experiments were conducted at the 
College of Agriculture - University of Basra, located at Garmat Ali, the soil was silty 
clay loam. The factors that were investigated are moisture content (14 and 24%), tillage 
depths (0, 15, 30, 45, and 50 cm) forward speeds (0.57, 0.94, and 1.34 m.s-1) and tire 
pressures (50, 100, and 150 kPa). ANN environment was developed with the back 
propagation algorithm using MATLAB software with various structures and training 
algorithms. Design Expert software utilized to evaluate the studied parameters and 
produce mathematical models. The results showed that all studied parameters had a 
significant effect on soil physical properties including bulk density and cone index. The 
effects of the studied factors on bulk density were depth > moisture content > forward 
speed, > tire pressure (6% 4%, 2.4%, 2%, respectively). Whereas, the order of the 
investigated factors based on their effects on cone index were depth > moisture content 
> tire pressure > forward speed (6%, 4%, 2.4% and 2%, respectively). The best model
for predicting the bulk density under different field conditions was the 4-8-1 architecture.
Levenberg-Marquardt (Trainlm) produced outstanding performance with an MSE of
0.00226 and R2 of 0.986. Moreover, this performance was occurring at an epoch of 100.
For predicting cone index, the best performance was achieved by Levenberg-Marquardt
(trainlm) in 85 epochs, giving minimum MSE equal to 0.005112 and greater (R2) equal
to 0.967 during the training process. Thus, the optimal structure for predicting cone index
was 4-7-1.

Keywords: ANN, Design-Expert software, Bulk density, Cone index. 

Introduction 

The sustainability of the agricultural systems 
depends mainly on preserving the soil and 
increasing its productivity. It can be achieved 
by avoiding improper practices that lead to soil 
degradation such as soil erosion or exposure to 

compaction and in this context. Soil 
compaction is described to indicate the 
shrinkage in the size of the pores between the 
soil aggregates (Pagliai et al., 2003). Hence, 
bulk density increases, and in some cases the 
destruction of a large part of its construction. 
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Therefore, the problem of soil compaction is a 
source of concern for workers in the 
agricultural sector. Hence, researchers focused 
on studying soil compaction and tillage 
operations to reduce its damage (Canarache et 
al., 2000; Arvidsson et al., 2003; Défossez et 
al., 2003; Arvidsson & Keller, 2004; Filipovic 
et al., 2006; Rücknagel et al., 2007; Peng & 
Horn, 2008; Keller & Arvidson, 2016). The 
causes that lead to the compaction of soil are 
multiple and overlapping such as the high 
mechanical load, tire specifications, soil tillage 
and crop service within ranges of high soil 
moisture. Sivarajan et al. (2018) found a 
significant effect of the moisture content of the 
study area and indicated that the change in the 
moisture content from 18 to 24% led to an 
increase in the bulk density values from 0.95 

to 1.01 Mg. 𝑚ିଷ. Dryer soils are less 

responsive to compaction as stress will spread 
and will be less able to distort the soil structure 
due to the ability of dry soils to distribute stress 
in the contact area between soil and tires 
(Batey, 2009). The important and fundamental 
factors to maintain soil productivity and 
reduce field soil compaction is the use of tires 
with a large contact area. Arvidsson et al. 
(2011) indicated that increasing the contact 
area between the tire and the field ground, is 
able to reduce the dry bulk density and 
increases the saturated hydraulic conductivity 
due to the high pressure dispersion generated 
under the double tires compared to the single 
tires, which is inversely proportional to the 
contact area. Also, Liu & Shalaby (2013) 
found that the tire pressure played a role in the 
compaction that the tire applied to the ground, 
as the soil pressure decreased by 15% under 
the center of the tire when the tire pressure was 
reduced from 690 kPa to 345 kPa.  Marra et al. 
(2018) explained in a study of the impact or 
groove depths generated after the tractor has 
passed, where it is possible to express the soil 

pressure generated from different tires by 
scanning and analyzing images of the depths 
of the resulting cracks or grooves at the same 
number of times the tractor is passed. D’Acqui 
et al. (2020) showed that the main effect of 
passing agricultural machinery was not limited 
to dry bulk density in moist soil. Rather, 
machinery and tractors left a clear trace of 
irregular U-shaped grooves, as well as 
changing the type and size of the pores. 
Taghavifar & Mardani (2014) indicated that 
the use of soil penetration resistance as an 
indicator of soil compaction is directly 
affected by the forward speed of the tractor. It 
found the inverse proportion between 
penetration resistance and forward speed. 

    Intelligent computing technology has been 
used in various disciplines and fields of 
research in computational sciences with 
various software technologies such as 
statistics, machine learning, artificial neural 
networks (ANN), analysis of fuzzy data, and 
artificial intelligence - to solve many problems 
and manage technical processes in all kinds of 
medical and engineering sciences (Almalki et 
al., 2016; Kamilaris & Prenafeta-Boldú, 2018; 
Shafaei et al., 2018; Almaliki et al., 2019; 
Almaliki et al., 2021; Monjezi, 2021; Monjezi 
& Hosseinzadeh, 2021).  

    Artificial Neural networks were used by 
Almaliki et al. (2019) to predict the tractive 
efficiency of the tractor during the tillage 
process and correlate this with a set of 
influencing factors such as soil penetration 
resistance, forward speed, and different tillage 
depths. These techniques gave high 
compatibility with the presented experimental 
data. For this reason, these models were 
considered in the study a fast, high-precision, 
and low-cost method. Santos et al. (2012) 
demonstrated the potential for using artificial 
neural networks to monitor and evaluate soil 
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quality through some of its physical properties. 
ANN was also used to predict soil 

fragmentation during the tillage process. Also, 
it was linked with a set of outputs such as water 

movement in the soil, drainage rate, aggregate 
condition, size of aggregates, soil moisture 
content, forward velocity, different tillage 
methods, soil organic matter content and soil 
density (Taghavifar & Mardani, 2014). Also, 
developed several models from ANN to 
estimate soil erosion and to characterize 
sediment distribution patterns under field 
conditions (Krueger et al., 2012). 

    Overall, there are no previous studies on the 
application of the artificial neural network 
simulation environment to predict soil 
compaction parameters based on realistic data 
resulting from changes in field conditions. 
Therefore, the essential objective of this 
research is to develop a valid ANN simulation 
environment and mathematical models for 
accurate prediction of the soil compaction 
parameters (bulk density and penetration 
resistance) under different operations 
conditions (soil moisture content, plowing 
depths, forward velocity, and tire pressure). 

Materials & Methods 

Field experiments  

The experiments were conducted in one of the 
fields of the College of Agriculture, University 
of Basrah, Garmat Ali site, in silty clay soil. 
The experiment's field was divided into two 
equal parts, each of part is 1500 square meters 
(20 × 75 meters). All field operations 
(plowing, pulverization and leveling) were 
carried out to prepare the soil for cultivation. 
Before performing the experiment, samples 
and measurements were taken before and after 
the implementation of the initial 
characteristics, represented by the moisture 
content, bulk density, soil reality density, soil 
texture, saturated hydraulic conductivity, 
cohesion, soil penetration resistance, and mean 

weighted diameter. For more accuracy, 
measurements were performed with three 
replications for each site. Where random 
samples were taken from the soil of the field 
from five places, in which the field was 
divided in the form of a letter (x) and with 
depths from 0 - 30 cm. Table (1) shows some 
of the physical characteristics of the soil under 
study. 

Field experiments tests 

Soil penetration resistance was measured by a 
digital penetrometer. The measurement is 
made per 1 cm depth in the soil before and 
after the tractor wheels pass. The angle of 
inclination of the cone is 30 degrees and the 
area of its base is 1 cm2. Soil penetration 
resistance was calculated for depths of 0-30 
cm according to ASAE S313.2 standards 
(ASAE, 2009). The rate of readings for each 
experiment is calculated. 

The soil bulk density was measured by Core 
Sample and reported in Black (1965) before 
and after soil compaction based on the 
following equation: 𝝆𝒃  = 𝐌 𝐒𝐕 𝐭 (1)               

where 𝜌= Soil bulk density 𝑀𝑔. 𝑚ିଷ M ୗ= Dry soil weight 𝑀𝑔 V ୲= Soil volume 𝑚ିଷ 

The total porosity of the soil was calculated 
based on the value of the solid density and the 
bulk density of the soil using the following 
equation Black (1965). T୮ = (1 − ఘ್ఘೞ) ∗ 100  (2)
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where T୮= Total porosity of the soil % 𝜌௦= Solid density 𝑀𝑔. 𝑚ିଷ 

Solid density was calculated according to the 
following equation: 

𝜌௦ =   ష ౩౩ഐೢ (3) 

where M ୗୗ= Soil weight in water  𝑀𝑔 𝜌௪= Density of water 𝑀𝑔. 𝑚ିଷ 

Table (1): Physical characteristics of the soil understudy 

Tractors and equipment used in the 
experiment 

Two CASE JX75T tractors were used to carry 
out the experiment. The first one was used for 
the purpose of demonstrating the effect of 
study factors on soil compaction, including 
three treatments of forward speeds, two levels 
of tire pressures and five levels of tillage 
depths. The second tractor was used to carry 
the subsoiler plow and the gearbox of it was 
placed in a neutral state. Both tractors are four-
wheel drive. The horsepower of a tractor is 
75hp (55kW), weight tractor is 2575 kg, a 
number of a cylinder is four, maximum torque 
is 242Nm, wheelbase is 2200mm, Ground 
clearance under rear axle is 555mm, type size 
tire of  Front/Back is 16 - 7.5/ 30 – 16.9. 

   In this experiment, a mounted sub-soiler 
plow was used. The basis of the operation of 

this plow is to carry out a single plowing line. 
The purpose of its use is to load the tractor 
engine with different traction forces by using 
it at different plowing depths (0, 15, 30, 45, 
and 50) cm. 

Experiments procedure 

The research included an evaluation of the 
effect of four different factors on soil 
compaction parameters (soil bulk density and 
cone index). The studied factors are the 
moisture content, different plowing depths, 
and different tire pressures and forward 
speeds, as shown in table (2). The research 
included 90 treatments and three replications 
for each treatment, to be 270 experimental 
units and a length of 10 meters for the 
experimental unit. Experiments were carried 
out after determining the location of the 
experiment according to the moisture content 

Depth (0-30) cm  Specification
194.622  Sand  

Soil particles
1-gm.kg 

509.453  Silt  
295.925Clay

Silty clay loamSoil texture
1.05  Bulk density (Mg.m-3) 
2.51  )3-Solid Density (Mg.m
0.576 (%)  Porosity
0.823Soil penetration (Mpa)  
0.286)1-aturated hydraulic conductivity (m.day

6.60  Dry (mm)  Mean weigh diameter  
(MWD) 0.206  Wet (mm)  

4.01)2-(kN.m Cohesion
14  First site

Moisture content (%)
24  Second site  
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(14 or 24%). As well as determining the 
required tire pressure, choosing the front 
speed, and setting the plow at the required 
depth. The experiments were conducted using 

the RNAM system (RNAM, 1995). To find out 
the compaction of the soil, the soil density and 
cone index were measured directly after the 
tractor tire passed over the soil surface. 

Table (2): Studied factor in an experiment 

Moisture 
content % 

Tire pressure 
kPa 

Speed of 
tractor ms-1 

Plowing depth 
cm 

14 50 0.57 0 
24 100 0.94 15 

150 1.34 30 
45 
50 

Mathematical models 

Design-Expert software (version: 8.0.6.1) was 
used to evaluate, analyze, and produce 
mathematical models to predict soil 
compaction parameters (soil density and cone 
guide). A 270 experiments were conducted 
under realistic agricultural conditions. The 
study included four independent factors. 
Which includes two levels of moisture content 
(14 and 24%), three levels of tire pressure (50, 
100, and 150 kPa), three front speeds (0.57, 
0.94, and 1.34 ms-1), and five plowing depths 
(0, 15, 30, 45, and 50 cm) to produce 
mathematical models with high accuracy and 
acceptability. The data were also analyzed 
using an ANOVA table to indicate the 
significance of the independent factors and 
their overlap on the compression criteria. 

ANN Models 

In this study, ANN models were used with a 
backpropagation algorithm that was developed 
to predict bulk density under different field 
conditions by using MATLAB (Demuth & 
Beale 1998). In general, the architectural 
structure of ANN consists of three layers: the 
input layer, the hidden layer, and the output 
layer. The data were divided randomly into 

three subgroups. The largest part of it was 
devoted to training the network 70%. As for 
the rest of the totals, 15% for validation of the 
model and 15% for testing the network. The 
network was tested using different algorithms 
to train the network and obtain the best 
performance of predicting depending on the 
statistical criteria (mean square error and 
coefficient of determination). The algorithms 
used are a graded origin with momentum 
(train-gdm), Bayesian regulation (train-br), 
Levenberg-Marquardt (train-lm) and Resilient 
(train-rp), and ratios graded with adaptive 
learning rate (train-gda). The number of 
hidden layers and the number of neurons 
within them were determined according to the 
trial and error method. As well as by 
comparing the network performance to choose 
the best execution.  

    The ANN architecture used in prediction 
models has four inputs and one output. These 
inputs were moisture content, plowing depth, 
forward speed, and tire pressure. The target of 
the model was bulk density as a criterion of 
soil compaction. Fig. (1) shows the schematic 
diagram of the ANN used to predict soil 
density. In this paper, the perceptual network 
was used. Triple layers consist of an input 
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layer, one hidden mathematical pattern layer, 
and an output layer. In each stratum, a number 
of neurons that were connected to the neurons 
of neighboring neurons via some associations 
were considered. The effective input of each 
neuron in these networks was the result of 
multiplying the outputs of the previous 
neurons by the weights of those neurons. In 
order to increase the accuracy, performance, 
and speed of implementing ANN, the target 
input and output factors were normalized or 
scaled linearly and made their values between 
-1 and 1.

Various statistical parameters (Mean Square
Error MSE and coefficient of determination
R2) were calculated to evaluate the
performance of the developed ANN models.
The MSE is used as a benchmark for

comparing aspects of error in the different 
models. The R2 is used to calculate standard 
error in estimation methods that illustrate the 
natural difference of the real data from the 
estimated data. The following are expressions 
of these statistical measures: 𝑀𝑆𝐸 = ଵே ∑ (𝑥 − 𝑥ො)ଶேୀଵ (4)  𝑅ଶ = ሾ∑ (௫ොି௫ො̅)(௫ି௫̅)ಿసభ ሿమ∑ (௫ොି௫ො̅)మൈ∑ (௫ି௫̅)మಿసభಿసభ (5) 

where:  

N: The number of test observation 

 𝑥: The value of the variable being modeled 

(observed data) 

 𝑥పෝ : The value of variable modeled by the 

model (predicted) �̅�: The mean value of the variable 

Fig. (1): Three-layered artificial neural network architecture 

Results & Discussion  

Bulk density 
Mathematical models 
A total of 270 field experiments were 
conducted to obtain the best model for 
predicting bulk density under different field 
conditions (moisture content, tire pressure, 

forward speed and tillage depth. A collection 
of various polynomial models were analyzed 
using the Design-Expert software, to choose 
more valid and dependable models. In order to 
optimize and minimize the number of 
candidate regression factors, a stepwise 
regression algorithm was applied, as the most 
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used variable selection technique 
(Montgomery & Runger, 2014). 

    ANOVA table was carried out to determine 
the significant effects of studied parameters on 
bulk density (Table 3). The results showed that 
all studied parameters had a significant effect 

on bulk density at probability value (equal to 
0.0001). Moreover, the ANOVA table 
revealed a significant effect between 
interactions of these parameters on bulk 
density except for the interaction between 
forwarding speed and plowing depth where it 
was not significant. 

Table (3) Analysis of variance for bulk density 

Source Sum of Square df F-Value
p-value

Prob > F
Model 16.14 10 169.57 < 0.0001 

A-Moisturecontent 5.76 1 605.58 < 0.0001 
B-Tire pressure 0.97 1 101.49 < 0.0001 
C-Tillage depth 7.64 1 802.40 < 0.0001 

D-Speed 1.07 1 112.64 < 0.0001 
AB 1.819E-4 1 0.019 0.0402 
AC 0.079 1 8.26 0.0144 
AD 6.977E-3 1 0.73 0.0327 
BC 0.086 1 8.99 0.0030 
BD 2.788E-4 1 0.029 0.0242 
CD 2.047E-4 1 0.022 0.8835 

Residual 
Lackof fit 
Pure error 

2.46 
0.28 
2.18 

259 
79 
180 

000 
0.29 

000 
<0.0001 

Cor Total 18.60   269 

    Fig. (2) show that soil moisture content and 
drive tire pressure effected on bulk density. As 
the increase in moisture content from 14% to 
24% led to an increase in the value of bulk 
density by 4%. This is due to the fact that 
increased moisture content increases the 
attraction of soil particles due to the increase 
in the surface tension between them and the 
overlap of their water membranes, thus 
increasing the bulk density and these results 
are compatible with results obtained by 
D'Acqui et al. (2020). The results also showed 
that the air pressure inside the tire affects the 
bulk density values. As the increase in tire 
pressure from 50 kPa to 150 kPa led to an 
increase of the bulk density by 2.3%, and the 
reason for this may be that the increase in tire 

pressure led to a decrease in the area of contact 
with the ground, which increased the 
compaction of the soil, thus increasing the 
values of bulk density and these results are in 
agreement  with the findings of Antille et al. 
(2013). The results also showed the double 
interference of moisture content and tire 
pressure on the bulk density. The percentage 
of moisture content 14% and tire pressure 50 
kPa gave the lowest value of bulk density, 
which amounted to 1.308 Mg .m-3. In addition, 
the percentage of moisture content 24% and 
tire pressure 150 kPa gave the highest value of 
bulk density, amounting to 1.38 Mg.m-3. It 
may be attributed to the ratio of moisture 
content 24% recorded the highest value of bulk 
density, while the large tire pressure reduced 
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the contact area between the tire and the field 
soil, which increased the amount of pressure 

applied to the soil, and led to the compaction 
of the soil. 

Fig. (2). The effect of soil moisture content and tire pressure on bulk density 

    Fig. (3) shows the dual effect of soil 
moisture and depth of tillage on bulk density. 
Bulk density increased by 5% when increasing 
the depth of tillage from 15 cm to 50 cm. The 
reason for this is that increasing the depth 
means more attachment of the plow to the soil, 
as well as more soil facing it. On the other 
hand, increasing the dynamic weight affecting 
the rear wheels to achieve adequate traction, 
thus increasing the pressure of the tractor tires 
on the field soil, which leads to compacting the 

soil. The results also showed the dual effect of 
both soil moisture and the depth of tillage, 
where the lowest value of bulk density was 
recorded at 14% moisture content, and the 
depth of plowing was 15 cm, and it was 1.275 
Mg .m-3. While the highest value of bulk 
density was recorded at 24% moisture content 
and a depth of 50 cm, reaching 1.418 Mg .m-3. 
The reason for this is that both the soil 
moisture and the depth of tillage are directly 
proportional to the bulk density. 

Fig. (3). The effect of soil moisture content and tillage depth on bulk density
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    Fig. (4) shows the combined effect of soil 
moisture and forward speed on bulk density. 
Increasing the practical forward speed of the 
tractor from 0.59 to 1.37 m.s-1 led to a decrease 
in the bulk density value by 4%. This is due to 
the fact that the increase in speed means a 
reduction in the time of the tires staying over 
the field, which reduced the pressure of the 
tractor tires on the field soil and thus Soil bulk 
density decreased and these results are in 
agreement with the results obtained by 
Shahgholi & Abuali (2015). 

    The results showed that the lowest value of 
bulk density was recorded at 14% moisture 
content and forward speed 1.37 ms-1, and it 
was 1.30 Mg .m-3. Whereas, the highest value 
of bulk density was recorded at 24% moisture 
content and 50 cm depth, and it was 1.382 Mg 
.m-3. The reason for this is attributed to the fact 
that the velocity of 1.37 ms-1 recorded the 
highest value of the bulk density while the low 
soil moisture maintained the strength of the 
soil against the force imposed on it 
(Taghavifar & Mardani, 2014). 

    Fig. (5) shows a combined interaction of 
both tire pressure and depth of tillage and their 
interactions in bulk density values. The results 
showed that there is a direct relationship 
between tire pressure and bulk density. 
Increasing the tire pressure from 50 to 150 kPa 
resulted in an increase in the bulk density 
values by 2.3%. It is due to the decrease in the 
area of contact of the tire with the field ground 
which increases the pressure on the unit area 
due to the increase in air pressure. The results 
also indicated that the lowest value of bulk 
density was recorded at a tire pressure of 50 
kPa and tillage depth of 15 cm, and it was 1.31 
Mg.m-3. Whereas, the highest bulk density was 
recorded at a tire pressure of 150 kPa and a 
tillage depth of 50 cm, and it was 1.40 Mg.m-

3. The reason for this is attributed to the
combined effect of these two factors, where
the depth of 50 cm increased the dynamic
weight of the tractor wheels, while the tire
pressure 150 reduced the contact area and thus
increased soil compaction and thus increased
bulk density.

Fig. (4): The effect of soil moisture content and forward speed on bulk density
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Fig. 5. The effect of tire pressure and tillage depth on bulk density 

    Fig. (6) illustrates the effect of tractor 
forward speed, tire pressure, and their 
interactions on bulk density values. The lowest 
bulk density value was recorded at the highest 
forward speed used in the experiment, 1.37 
m.s-1, and the lowest tire pressure was 50 kPa,
and it was 1.325 Mg.m-3. Whereas, the highest
bulk density value at the highest tire pressure

is used 150 kPa and the lowest forward speed 
of the tractor is 0.59 m.s -1, which is 1.365 Mg 
.m-3. The reason for this is that the high speed 
reduces the time of the tractor remaining on the 
field ground while reducing the tire pressure 
increases the contact area and thus reduces the 
bulk density values. These results are in 
agreement with Shahgholi & Abuali (2015). 

Fig. (6): The effect of tire pressure and forward speed on bulk density 

    Fig. (7) shows an amount of effect on bulk 
density when any of the four influencing 
factors (moisture content, tire pressure, depth 

of tillage, and forward speed of the tractor) 
changes independently. It was found that the 
most important factor in relation to the bulk 
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density is the depth of plowing and its effect is 
6%. The results showed that the next factor 
affecting the bulk density is the moisture 
content by 4%, then the forward speed of the 
tractor by 2.4%, while the tire pressure comes 
in the fourth-order with an impact rate of 2%. 

It is also noted that the relationship of soil 
moisture, tire pressure, and depth of tillage 
was positive with bulk density, while the 
relationship was inverse between forward 
speed and bulk density. 

Fig. (7): The effect of studied factors on bulk density

    The predicted values of bulk density were 
found by adopting and introducing all the 
factors under study, namely soil moisture 
content, tire pressure, depth of tillage, tractor 

speed, and their interactions (Fig. 8). Which 
gave the best results based on the value of the 
coefficient of determination, which is R2 = 
0.8675 under different field conditions. 

Fig. (8). Relationship between the predicted bulk density and the field-calculated bulk density 
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The fitted model for the bulk density is represented in Eq. 6: 𝑫𝒓𝒚 𝑩𝒖𝒍𝒌 𝑫𝒆𝒏𝒔𝒊𝒕𝒚=   1.77 + (0.02 ∗ moisture content)  +  (7.45E − 004 ∗  tire pressure)  + (3.06E − 003 ∗ tillage depth)  −  (0.15 ∗ speed)  + (4.02E − 006∗ moisture content ∗  tire pressure)  + (1.830E − 004 ∗ moisture content∗  tillage depth)  − (3.19E − 003 ∗ moisture content ∗  speed)  + (2.34E − 005∗  tire pressure ∗  tillage depth)  +  (7.81E − 005 ∗  tire pressure ∗  speed)+ (1.46E − 004 ∗  tillage depth ∗  speed)   (6)   
ANN Model 
Table (4) shows the best topology and 
statistical parameters for ANN models using 
different bulk density training algorithms. As 
a whole, all training algorithms showed 
satisfactory results. Levenberg-Marquardt 
(Trainlm) produced an outstanding 
performance with an MSE of 0.00226 and R2 

of 0.986. Moreover, this performance was 
occurring at an epoch of 100. Hence, the best 
model for predicting the bulk density under 
different field conditions is the 4-8-1 
architecture. The weakest among training 
algorithms was Graded origin with momentum 
(train-gdm) with topology 4-1-1, epoch of 99, 
R2 of 0.953 and MSE of 0.01195.

Table (4):  Different ANN structures for bulk density prediction 

Training Algorithm 
Optimum 
topology 

Epochs MSE R2

Levenberg-Marquardt (Train-lm) 4-8-1 31 0.002263 0.986 

Bayesian regulation (train-br) 4-6-1 46 0.004757 0.973 

 Ratios graded with adaptive learning rate 
(train-gda) 

4-7-1 99 0.007288 0.966 

Resilient (train-rp) 4-9-1 96 0.009293 0.960 

Graded origin with momentum (train-gdm) 4-1-1 99 0.011956 0.953 

    Fig. (9) shows the regression between actual 
and expected values of bulk density under 
different field conditions for training, 
validation, testing and all data sets. Where R 
values were equal to 0.9930, 0.9959, 0.9933 
and 0.9935 for training, validation, testing, and 
all data, respectively. The inconsiderable 
difference between the expected and actual 
values confirmed the reliability of the network 
in predicting the bulk density.      

Fig. (10) shows the result of the regression to 
train the neural network for MSE for all epochs 
and notes the speed of the network's 
performance in reaching the best results. The 
value of the epochs was equal to 31. After this 
value is noted the stability of the mean square 
error curve, and this is an indication of the 
network reaching to appropriate and sufficient 
training.  
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Table (5): Analysis of variance for cone index 

Source 
Sum of 
Square 

   df F-Value
p-value
Prob > F

Model 2.419E+005     10 341.12 < 0.0001 
A-Moisture content 29359.19      1 414.01 < 0.0001 
B-Tire pressure 10586.85      1 149.29 < 0.0001 
C-Tillage depth 1.816E+005      1 2561.03 < 0.0001 
D-Speed 5536.19      1 78.07 < 0.0001 
AB 34.52      1 0.49     0.4860 
AC 4903.23      1 69.14     0.0001 
AD 119.90      1 1.69     0.1946 
BC 2056.39      1 29.00     0.0001 
BD 151.74      1 2.14     0.1447 
CD 126.52      1 1.78     0.1828 
Residual 
Lack of fit 
Pure error 

18366.78 
10069.91 
8296.87 

  259 
   79 
   180 

000 
2.77 

    000 
  <0.0001 

Cor Total 2.603E+005     269 

  Fig. (9). Regression analysis for bulk density prediction based 4-8-1 topology and Levenberg-
  Marquardt training algorithm

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Target

O
u
tp

u
t ~

= 
0.

99
*T

ar
g
et

 +
 -0

.0
02

3

Train Data: R=0.99309

Data
Fit
Y = T

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Target

O
u
tp

u
t ~

= 
0.

99
*T

ar
g
et

 +
 -0

.0
08

1

Validation Data: R=0.99594

Data
Fit
Y = T

-0.5 0 0.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Target

O
u
tp

u
t ~

= 
0.

98
*T

ar
g
et

 +
 9

.1
e-

05

Test Data: R=0.9933

Data
Fit
Y = T

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Target

O
u
tp

u
t ~

= 
0.

99
*T

ar
g
et

 +
 -0

.0
02

8

All Data: R=0.99351

Data
Fit
Y = T



Salim et al., /Basrah J. Agric. Sci., 35(1): 188-211, 2022 

201

  Fig. (10): Regression result of neural network training for MSE of all epochs for bulk density

Cone index 

Mathematical models 
As shown in table (5), moisture content, tillage 
depth, tire pressure and forward speed had a 
significant effect on cone index (p<0.0001). 
The interactions between soil moisture 
content- tillage depth and tire pressure - tillage 
depth were significant. As for the rest of the 
interactions, they did not have a significant 
effect on the cone index. But the lack of fit was 
significant (p<0.05), which means that the 
model cannot be applicable to the data. Fig. 
(11) shows the relationship between soil
moisture content and tire pressure on the cone
index. The results showed that there was a
significant effect of tire pressure and soil
moisture, while their interactions had no
significant effect on the values of soil
penetration resistance (cone index). Increasing
the tire pressure from 50 kPa to 150 kPa led to
an increased in the cone index value by 8%.
The reason for this may be that the increase in
tire pressure led to a decrease in the area of
contact with the ground, which increased the
soil pressure, thus increasing the values of soil

penetration resistance. These results are 
consistent with the findings of Pagliai et al. 
(2003) and Zhukov (2015). The results also 
showed that soil moisture affected soil 
penetration resistance values, as increasing the 
moisture content from 14% to 24% led to a 
decrease in the soil penetration resistance 
value by 13.5%. The reason for this is that the 
increased moisture content has weakened the 
soil. In addition, the water membranes around 
the soil particles acted as a lubricant, which 
greatly contributed to reducing the friction 
between the cone head with soil. Thus 
facilitating the penetration of the cone into the 
soil. These results correspond with those 
obtained by Tang et al. (2016). The results also 
indicated the effect of the bilateral interaction 
between tire pressure and soil moisture 
content, which was not significant. The 
pressure of 50 kPa and the moisture content of 
24% gave the lowest value of soil penetration 
resistance of 3.2 MPa. Whereas, the moisture 
content of 14% 
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Fig. (11): The effect of moisture content and tire pressure on cone index 

and the pressure of 150 kPa gave the highest 
value of soil penetration resistance, reaching 
4.15 MPa. The results showed a highly 
significant effect of the depth of tillage and soil 
moisture and their interactions on the values of 
soil penetration resistance (Fig. 12). Increasing 
the tillage depth from 15 cm to 50 cm led to an 
increase in the penetration resistance of the 
soil by 27%. This is due to the fact that 
increasing the depth means increased tire 
slippage, which increases soil compactness. In 
addition, the increased required force for 
traction led to increasing the vertical force of 
the tires per area unit, so the compaction 

increases on the field soil and thus increases 
the values of soil resistance to penetration. The 
results also showed the dual effect between the 
depth of tillage and the soil moisture content 
on the values of soil penetration resistance. 
The highest value of soil penetration resistance 
was recorded at 14% moisture content and 50 
cm tillage depth of 4.7 MPa. The lowest value 
of soil penetration resistance was recorded at 
24% moisture content and 15 cm depth and 
was 3.2 MPa. The reason for this is attributed 
to the positive effect of increasing the depth 
and the negative effect of increasing the 
moisture content in increasing the cone index. 

Fig. (12): The effect of moisture content and tillage depth on cone index
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    The results showed a highly significant 
effect of soil moisture and the forward speed 
of the tractor, while their interactions did not 
affect the value of soil penetration resistance 
(Fig. 13). Increasing the forward speed of the 
tractor from 0.59 to 1.37 m.s-1 reduced the 
value of soil penetration resistance by 11%. 
The reason for this is that increasing the speed 

means a reduction in the time of staying tires 
over the field ground, which reduced the 
chance of the tractor tires being compressed on 
the field soil and thus decreased the values of 
soil penetration resistance. These results are 
consistent with the results obtained by 
Taghavifar & Mardani (2014). 

Fig. (13): The effect of moisture content and forward speed on cone index

    Fig. (14) shows the relationship between tire 
pressure and depth of tillage and their overlaps 
on the cone index. The results showed that 
there was a significant effect of tire pressure, 
tillage depth, and their interactions on the cone 
index values. The highest value of soil 
penetration resistance was recorded at a tire 
pressure of 150 kPa and depth of 50 cm, with 
a value of 4.2 kPa. The lowest value of soil 
penetration resistance was recorded at a 
pressure of 50 kPa and a depth of 15 cm, and 

it was 2.4 kPa. The reason for this is that the 
depth of 50 cm recorded the highest traction 
force.  The draft force increases the dynamic 
weight of the tires on the soil surface and thus 
increases the compaction of the soil under the 
tires. On the other hand, the increase in tire 
pressure led to a decrease in the contact area 
between the tire and the soil, consequently 
increased soil compacting. These results are in 
agreement with Błaszkiewicz (2019). 
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Fig. (14): The effect of tire pressure and tillage depth on cone index

    Fig. (15) shows the magnitude of the effect 
on soil penetration resistance (cone index) 
when any of the influencing factors (moisture 
content, air pressure, depth of tillage, and 
forward speed of the tractor) change 
independently. It was found that the most 
important factor for soil resistance to 
penetration is the depth of tillage and its 
impact ratio is 6%, followed by moisture 
content, tire pressure, and forward speed by 
4%, 2.4%, and 2%, respectively. These results 

are in agreement with the findings of Naranjo 
et al. (2014) who showed that increasing the 
depth affects the accumulation of soil in front 
of the wheels, which leads to an increase in 
penetration resistance. The results also showed 
that the effect of both tire pressure and tillage 
depth was directly affected by the cone index. 
On the other hand, the effect of both soil 
moisture and forward speed was inversely 
affected by the cone index. 

Fig. (15): The effect of studied factors on cone index 

    The relationship between the predicted 
values of soil penetration resistance was found 
by adopting and introducing all the factors 
under study, namely soil moisture content, tire 

pressure, depth of tillage, tractor speed and 
their interactions (Fig. 16). The close 
dispersion of the data around the unit slope line 
confirms the excellent performance of the 
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developed model with a coefficient of 
determination (R2) = 0.9294 under different 
field conditions.  

    The appropriate model for the cone index is 
represented in Eq.7, in which the coefficients 
are in the coded unit form. 

𝑪𝒐𝒏𝒆 𝒊𝒏𝒅𝒆𝒙 =  48.30 + (−1.20 ∗ moisture content)  +  (0.04 ∗  tire pressure)  +  (2.01 ∗tillage depth)  −  (25.22 ∗ speed)  −  (1.75E − 003 ∗ moisture content ∗ tire pressure)  −  (0.04 ∗ moisture content ∗  tillage depth)  + (0.41 ∗moisture content ∗  speed)  +  (3.63E − 003 ∗  tire pressure ∗ tillage depth)  +  (0.05 ∗  tire pressure ∗  speed)  − (0.11 ∗ tillage depth ∗  speed)                                                    (7)  

Fig. (16): Relationship between the predicted and the actual of cone index

ANN models 
Table (6) shows the optimal structure and 
statistical criteria of ANN models using 
different training algorithms. The best 
performance was achieved by Levenberg-
Marquardt (trainlm) in 85 epochs, giving 
minimum MSE equal to 0.005112 and greater 
(R2) equal to 0.967 during the training process. 
Thus, the optimal structure for predicting the 
cone index was 4-7-1. The results also 
illustrated the rest of training algorithms used 
in prognostication of cone index was 
acceptable and reliable except Resilient 
(trainrp) which gave the highest MSE and 
lowest R2 compared with other algorithms by 
0.079532 and 0.82, respectively. On the other 
hand, Graded origin with momentum (train-
gdm) did not answer predicting cone index. 

    Fig. (17) Illustrates the performance of the 
training network. It is evident from this figure 
that the MSE of training decreased with 
increasing the training period up to 92. After 
this value, the MSE of training was stabilized. 
Fig. 18 shows the correlation between actual 
and expected values of the cone index under 
different working conditions for training, 
validation, testing, and all data sets. The small 
difference between the predicted and 
measured values emphasized the reliability of 
the network in predicting the cone index. 
These results are consistent with the findings 
of Santos et al. (2012) who confirmed the 
ability of neural networks to predict soil 
penetration resistance. 
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Table (6):  Different ANN structures for cone index prediction 

Training Algorithm 
Optimum 
topology 

Epochs MSE R2

Levenberg-Marquardt 
(Trainlm) 

4-7-1 92 0.005112 0.967 

Bayesian regulation 
(trainbr) 

4-9-1 87 0.006591 0.943 

 Ratios graded with 
adaptive learning rate 
(train-gda) 

4-8-1 99 0.043211 0.906 

Resilient (train-rp) 4-5-1 96 0.079532 0.820 

Graded origin with 
momentum (train-gdm) 

Not answer - - - 

Fig. (17):  The best validation performance of training LM to predict cone index 

   Table (7): Comparison of statistical performance between mathematical models and ANN for
  soil compaction criteria
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Fig. (18): Correlation between actual and predicted values of cone index in training, test, 
validation and all data sets

     Table (7) illustrates the best results 
obtained from mathematical models and ANN 
models for studied parameters in this research 
with statistical criteria (MSE and R2). The 
results show that all models had an acceptable 
performance for predicting soil compaction 
parameters (bulk density and cone index) 
under various field conditions. But the 
premium model yielded by ANN technique 
with MSE of 0.002263 and R2 of 0.986 for 

bulk density. Artificial intelligent models 
(ANN) outperformed mathematical models for 
predicting cone index. ANN model produced 
the premium performance with MSE of 
0.005112 and R2 of 0.967. This is consistent 
with what was found by Almaliki et al. (2019) 
during their study to predict the tractive 
efficiency. 
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Conclusion 

In this research, intelligent computational 
(artificial neural networks and Design Expert 
software) were used to predict soil compaction 
criteria (soil bulk density and cone index). 
Various training algorithms were tested by 
using Backpropagation neural networks. MSE 
and R2 were approved as statistical criteria for 
evaluating soil compaction. It was found that 
the smart computing methods used achieved 
satisfactory results for predicting soil 
compaction parameters. Levenberg-Marquardt 
(trainlm) gave the best performance in training 
the neural network for predicting soil density 
and cone index compared to the rest of the used 
algorithms. Bulk density increased with 
increasing plowing depth, tire pressure, and 
soil moisture, while it decreased with 
increasing the forward speed of the tractor. On 
the other hand, increasing the front speed of 
the tractor and soil moisture reduced the cone 
index, while it tends to rise with increasing 
tillage depth and tire pressure. When 
comparing the performance of neural networks  

and mathematical models, it is noted that 
neural networks are superior to predicting soil 
compaction parameters. In general, it is 
possible to use ANN models to predict soil 
performance due to their excellent speed and 
accuracy of results. 
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ʤاس سالॺɸ ʗالاح ʗʮو   1ع  ʙʱع ʤالؒي سالʸو   1ال ȏʦیʗ2داخل راضي ن

 ، العʛاق جامعة الʛʸॼةة قʦʶ الʺȞائʧ والالات الʜراॽɺة،  كلॽة الʜراع1

ʜراॽɺة قʦʶ علʨم الȃʛʱة والʺॽاه، جامعة الʛʸॼة، العʛاق كلॽة ال2

ʸالʯʴʳلʝ  :  ةॽɺاʻʢة الاصॽʰʸة العȞॼʷاكاة للʴة مʯʽب ʛȄʨʢت ʨه ʘʴॼا الʚه ʧف الأساسي مʙالهANN    ةॽة عالॽاضȄونʺاذج ر
الʙقة للǼ ʕʰʻʱʺعایʛʽ ضغȌ الȃʛʱة (الʲؔافة الʤاهȄʛة ومʕشʛ الʺʛʵوȋ (مقاومة الاخʛʱاق)) في ʛʣوف حقلॽة مʱʵلفة. أجʗȄʛ الʳʱارب   19 

 CASE JX75T  20، مʨقع ʛؗمة علي ، في تȃʛة ॽʻʽʡة ॽʻʽʡة. تʦ اسʙʵʱام جʛار    جامعة الʛʸॼة  -في أحʙ حقʨل ؗلॽة الʜراعة  
لʙراسة تأثʛʽه على انʹغاȋ الȃʛʱة في ʣل ʛʣوف حقلॽة مʱʵلفة. اشʱʺلʗ عʨامل الʙراسة على مȄʨʱʶات مʱʵلفة مʧ مȐʨʱʴ الȃʨʡʛة 

م / ثا)   0.57    ،0.94    ،1.34(ʛʶȃعات مʱʵلفة  و سʦ)    50،    45،    30،    15،    0٪) ، وأعʺاق حʛاثة مʱʵلفة (24و    14(
Ǽاسʙʵʱام خʨارزمॽة الانʷʱار الʵلفي Ǽاسʙʵʱام    ʽؗANNلǼ ʨاسȞال). تʦ تʛȄʨʢ بʯʽة    150و    100و    50وضغȋʨ إʡارات مʱʵلفة (   23 

لʱقʦॽʽ العʨامل الʺʙروسة وȂنʱاج نʺاذج    Design Expertبهॽاكل وخʨارزمॽات تʙرʖȄ مʱʵلفة. اسʙʵʱم بʛنامج    MATLABبʛنامج  
ॽاضȄل رʽودل الʤاهȄʛة  (الʲؔافة  الȃʛʱة   ȋانʹغا  ʛʽمعای على   ȑʨʻمع  ʛʽتأث لها  الʺʙروسة  الʺʱغʛʽات  جʺॽع  أن  الʱʻائج  أʣهʛت  ة. 

الʺʛʵوȋ). ؗʺا أشارت الʱʻائج إلى أن العامل الأكʛʲ تأثʛʽاً على الʲؔافة الʤاهȄʛة هʨ عʺȘ الʛʴاثة ، یلॽه مȐʨʱʴ الȃʨʡʛة ، والʛʶعة   26 
٪ على الʨʱالي. وجʙ أن أهʦ العʨامل الʺʕثʛة في مʕشʛ الʺʛʵوȋ هʨ عʺȘ  2٪ ،  2.4٪ ،  4٪  6ت بॼʶʻة  الأمامॽة ، وضغȌ الإʡارا 27 

٪ على الʨʱالي. أفʹل نʺʨذج 2٪ و  2.4٪ و 4٪ یلॽه مȐʨʱʴ الȃʨʡʛة وضغȌ الإʡارات والʛʶعة الأمامॽة 6الʛʴث ونॼʶة تأثʛʽه  28 
ʖʽ    للǼ ʕʰʻʱالʲؔافة الʤاهȄʛة في ʣل الʛʤوف الʺʙʽانॽة الʺʱʵلفة ʛؗʱال ʨ1-8-4ه) ʗʳʱأن .Marquardt (Trainlm-Levenberg  29 

مʧ   100. علاوة على ذلʥ ، ؗان هʚا الأداء ʙʴǽث في الʙورة   ʶǽ0.986او2R    ȑو    0.00226قʙره    MSEأداءً مʜًʽʺʱا مع   30 
 85في    inlmTraMarquardt (-LevenbergتʙرʖȄ الȞॼʷة العॽʰʸة. للʕʺǼ ʕʰʻʱشʛ الʺʛʵوȋ، تʦ تʴقȘʽ أفʹل أداء بʨاسʢة (

  ʧالأدنى م ʙʴاء الʢمع إع ،ʖȄرʙʱال ʧدورة مMSE    ȑاوʶǽ0.005112  ) ʛʰ2وأكR  ȑاوʶǽ (0.967    .ʖȄرʙʱة الॽاء عʺلʻأث 32 
  ʨه ȋوʛʵʺال ʛشʕʺǼ ʕʰʻʱل للʲالأم ʖʽ ʛؗʱالي ، ؗان الʱالȃ1-7- 4و .
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