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Abstract: The primary objective of this paper was to develop an artificial neural
network (ANN) simulation environment and mathematical models for predicting with
high accuracy soil compression parameters. The experiments were conducted at the
College of Agriculture - University of Basra, located at Garmat Ali, the soil was silty

clay loam. The factors that were investigated are moisture content (14 and 24%), tillage
depths (0, 15, 30, 45, and 50 cm) forward speeds (0.57, 0.94, and 1.34 m.s™") and tire
pressures (50, 100, and 150 kPa). ANN environment was developed with the back
propagation algorithm using MATLAB software with various structures and training
algorithms. Design Expert software utilized to evaluate the studied parameters and
produce mathematical models. The results showed that all studied parameters had a
significant effect on soil physical properties including bulk density and cone index. The
effects of the studied factors on bulk density were depth > moisture content > forward
speed, > tire pressure (6% 4%, 2.4%, 2%, respectively). Whereas, the order of the
investigated factors based on their effects on cone index were depth > moisture content
> tire pressure > forward speed (6%, 4%, 2.4% and 2%, respectively). The best model
for predicting the bulk density under different field conditions was the 4-8-1 architecture.
Levenberg-Marquardt (Trainlm) produced outstanding performance with an MSE of
0.00226 and R? of 0.986. Moreover, this performance was occurring at an epoch of 100.
For predicting cone index, the best performance was achieved by Levenberg-Marquardt
(trainlm) in 85 epochs, giving minimum MSE equal to 0.005112 and greater (R?) equal
to 0.967 during the training process. Thus, the optimal structure for predicting cone index
was 4-7-1.

Keywords: ANN, Design-Expert software, Bulk density, Cone index.

Introduction

this
is described to

compaction and in context.

compaction

indicate the

The sustainability of the agricultural systems
depends mainly on preserving the soil and
increasing its productivity. It can be achieved
by avoiding improper practices that lead to soil
degradation such as soil erosion or exposure to
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shrinkage in the size of the pores between the
soil aggregates (Pagliai et al., 2003). Hence,
bulk density increases, and in some cases the
destruction of a large part of its construction.
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Therefore, the problem of soil compaction is a
source of concern for workers in the
agricultural sector. Hence, researchers focused
on studying soil compaction and tillage
operations to reduce its damage (Canarache et
al., 2000; Arvidsson et al., 2003; Défossez et
al., 2003; Arvidsson & Keller, 2004; Filipovic
et al., 2006; Riicknagel et al., 2007; Peng &
Horn, 2008; Keller & Arvidson, 2016). The
causes that lead to the compaction of soil are
multiple and overlapping such as the high
mechanical load, tire specifications, soil tillage
and crop service within ranges of high soil
moisture. Sivarajan et al. (2018) found a
significant effect of the moisture content of the
study area and indicated that the change in the
moisture content from 18 to 24% led to an
increase in the bulk density values from 0.95
to 1.01 Mg.m™3.
responsive to compaction as stress will spread

Dryer soils are less
and will be less able to distort the soil structure
due to the ability of dry soils to distribute stress
in the contact area between soil and tires
(Batey, 2009). The important and fundamental
factors to maintain soil productivity and
reduce field soil compaction is the use of tires
with a large contact area. Arvidsson et al.
(2011) indicated that increasing the contact
area between the tire and the field ground, is
able to reduce the dry bulk density and
increases the saturated hydraulic conductivity
due to the high pressure dispersion generated
under the double tires compared to the single
tires, which is inversely proportional to the
contact area. Also, Liu & Shalaby (2013)
found that the tire pressure played a role in the
compaction that the tire applied to the ground,
as the soil pressure decreased by 15% under
the center of the tire when the tire pressure was
reduced from 690 kPa to 345 kPa. Marra et al.
(2018) explained in a study of the impact or
groove depths generated after the tractor has
passed, where it is possible to express the soil
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pressure generated from different tires by
scanning and analyzing images of the depths
of the resulting cracks or grooves at the same
number of times the tractor is passed. D’ Acqui
et al. (2020) showed that the main effect of
passing agricultural machinery was not limited
to dry bulk density in moist soil. Rather,
machinery and tractors left a clear trace of
irregular U-shaped grooves, as well as
changing the type and size of the pores.
Taghavifar & Mardani (2014) indicated that
the use of soil penetration resistance as an
indicator of soil compaction is directly
affected by the forward speed of the tractor. It
the

penetration resistance and forward speed.

found inverse proportion between

Intelligent computing technology has been
used in various disciplines and fields of
with

as

research in computational sciences

various software technologies such
statistics, machine learning, artificial neural
networks (ANN), analysis of fuzzy data, and
artificial intelligence - to solve many problems
and manage technical processes in all kinds of
medical and engineering sciences (Almalki et
al., 2016; Kamilaris & Prenafeta-Boldu, 2018;
Shafaei et al., 2018; Almaliki et al., 2019;
Almaliki et al., 2021; Monjezi, 2021; Monjezi

& Hosseinzadeh, 2021).

Artificial Neural networks were used by
Almaliki et al. (2019) to predict the tractive
efficiency of the tractor during the tillage
process and correlate this with a set of
influencing factors such as soil penetration
resistance, forward speed, and different tillage
depths.  These high
compatibility with the presented experimental

techniques  gave
data. For this reason, these models were
considered in the study a fast, high-precision,
and low-cost method. Santos et al. (2012)
demonstrated the potential for using artificial
neural networks to monitor and evaluate soil
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quality through some of its physical properties.

ANN was also used to predict soil

movement in the soil, drainage rate, aggregate
condition, size of aggregates, soil moisture
content, forward velocity, different tillage
methods, soil organic matter content and soil
density (Taghavifar & Mardani, 2014). Also,
developed several models from ANN to
estimate soil erosion and to characterize
sediment distribution patterns under field
conditions (Krueger ef al., 2012).

Overall, there are no previous studies on the
application of the artificial neural network
simulation environment to predict soil
compaction parameters based on realistic data
resulting from changes in field conditions.
Therefore, the essential objective of this
research is to develop a valid ANN simulation
environment and mathematical models for
accurate prediction of the soil compaction
parameters (bulk density and penetration
different

conditions (soil moisture content, plowing

resistance)  under operations

depths, forward velocity, and tire pressure).
Materials & Methods

Field experiments

The experiments were conducted in one of the
fields of the College of Agriculture, University
of Basrah, Garmat Ali site, in silty clay soil.
The experiment's field was divided into two
equal parts, each of part is 1500 square meters
(20 x
(plowing, pulverization and leveling) were

75 meters). All field operations

carried out to prepare the soil for cultivation.
Before performing the experiment, samples
and measurements were taken before and after
the of  the
characteristics, represented by the moisture

implementation initial
content, bulk density, soil reality density, soil
texture, saturated hydraulic conductivity,

cohesion, soil penetration resistance, and mean

190

fragmentation during the tillage process. Also,
it was linked with a set of outputs such as water

weighted diameter. For more accuracy,
measurements were performed with three
replications for each site. Where random
samples were taken from the soil of the field
from five places, in which the field was
divided in the form of a letter (x) and with
depths from 0 - 30 cm. Table (1) shows some
of the physical characteristics of the soil under

study.
Field experiments tests

Soil penetration resistance was measured by a
digital penetrometer. The measurement is
made per 1 cm depth in the soil before and
after the tractor wheels pass. The angle of
inclination of the cone is 30 degrees and the
area of its base is 1 cm? Soil penetration
resistance was calculated for depths of 0-30
cm according to ASAE S313.2 standards
(ASAE, 2009). The rate of readings for each
experiment is calculated.

The soil bulk density was measured by Core
Sample and reported in Black (1965) before
and after soil compaction based on the
following equation:

_ Mg
=7

Pp (D

where

pp= Soil bulk density Mg.m™3

M g= Dry soil weight Mg

V = Soil volume m~3

The total porosity of the soil was calculated
based on the value of the solid density and the
bulk density of the soil using the following
equation Black (1965).

T, = (1— 51+ 100 2)
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where

T,= Total porosity of the soil %

ps= Solid density Mg. m™3

Solid density was calculated according to the
following equation:

Sci., 35(1): 188-211, 2022

€)

Ps = Mg-Mss
Pw

where

M gs= Soil weight in water Mg

p.= Density of water Mg.m™3

Table (1): Physical characteristics of the soil understudy

Specification Depth (0-30) cm
. . Sand 194.622
Sogrirgﬁles silt 509.453
' Clay 295.925
Soil texture Silty clay loam
Bulk density (Mg.m™) 1.05
Solid Density (Mg.m™) 2.51
Porosity (%) 0.576
Soil penetration (Mpa) 0.823
aturated hydraulic conductivity (m.day™") 0.286
Mean weigh diameter Dry (mm) 6.60
(MWD) Wet (mm) 0.206
Cohesion (kN.m™) 4.01
. 0 First site 14
Moisture content (%) Second site 24

Tractors and equipment used in the

experiment

Two CASE JX75T tractors were used to carry
out the experiment. The first one was used for
the purpose of demonstrating the effect of
study factors on soil compaction, including
three treatments of forward speeds, two levels
of tire pressures and five levels of tillage
depths. The second tractor was used to carry
the subsoiler plow and the gearbox of it was
placed in a neutral state. Both tractors are four-
wheel drive. The horsepower of a tractor is
75hp (55kW), weight tractor is 2575 kg, a
number of a cylinder is four, maximum torque
is 242Nm, wheelbase is 2200mm, Ground
clearance under rear axle is 555mm, type size
tire of Front/Back is 16 - 7.5/30 —16.9.

In this experiment, a mounted sub-soiler
plow was used. The basis of the operation of
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this plow is to carry out a single plowing line.
The purpose of its use is to load the tractor
engine with different traction forces by using
it at different plowing depths (0, 15, 30, 45,
and 50) cm.

Experiments procedure

The research included an evaluation of the
effect of four different factors on soil
compaction parameters (soil bulk density and
cone index). The studied factors are the
moisture content, different plowing depths,
and different tire pressures and forward
speeds, as shown in table (2). The research
included 90 treatments and three replications
for each treatment, to be 270 experimental
units and a length of 10 meters for the
experimental unit. Experiments were carried
out after determining the location of the
experiment according to the moisture content
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(14 or 24%). As well as determining the
required tire pressure, choosing the front
speed, and setting the plow at the required
depth. The experiments were conducted using

the RNAM system (RNAM, 1995). To find out
the compaction of the soil, the soil density and
cone index were measured directly after the
tractor tire passed over the soil surface.

Table (2): Studied factor in an experiment

Moisture Tire pressure Speed of Plowing depth
content % kPa tractor ms™! cm
14 50 0.57 0
24 100 0.94 15
150 1.34 30
45
50

Mathematical models

Design-Expert software (version: 8.0.6.1) was

used to evaluate, analyze, and produce

mathematical models to predict soil
compaction parameters (soil density and cone
guide). A 270 experiments were conducted
under realistic agricultural conditions. The
study included four independent factors.
Which includes two levels of moisture content
(14 and 24%), three levels of tire pressure (50,
100, and 150 kPa), three front speeds (0.57,
0.94, and 1.34 ms™), and five plowing depths
(0, 15, 30, 45, and 50 cm) to produce
mathematical models with high accuracy and
acceptability. The data were also analyzed
using an ANOVA table to indicate the
significance of the independent factors and

their overlap on the compression criteria.
ANN Models

In this study, ANN models were used with a
backpropagation algorithm that was developed
to predict bulk density under different field
conditions by using MATLAB (Demuth &
Beale 1998). In general, the architectural
structure of ANN consists of three layers: the
input layer, the hidden layer, and the output
layer. The data were divided randomly into
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three subgroups. The largest part of it was
devoted to training the network 70%. As for
the rest of the totals, 15% for validation of the
model and 15% for testing the network. The
network was tested using different algorithms
to train the network and obtain the best
performance of predicting depending on the
statistical criteria (mean square error and
coefficient of determination). The algorithms
used are a graded origin with momentum
(train-gdm), Bayesian regulation (train-br),
Levenberg-Marquardt (train-lm) and Resilient
(train-rp), and ratios graded with adaptive
learning rate (train-gda). The number of
hidden layers and the number of neurons
within them were determined according to the
trial and error method. As well as by
comparing the network performance to choose
the best execution.

The ANN architecture used in prediction
models has four inputs and one output. These
inputs were moisture content, plowing depth,
forward speed, and tire pressure. The target of
the model was bulk density as a criterion of
soil compaction. Fig. (1) shows the schematic
diagram of the ANN used to predict soil
density. In this paper, the perceptual network
was used. Triple layers consist of an input
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layer, one hidden mathematical pattern layer,
and an output layer. In each stratum, a number
of neurons that were connected to the neurons
of neighboring neurons via some associations
were considered. The effective input of each
neuron in these networks was the result of
multiplying the outputs of the previous
neurons by the weights of those neurons. In
order to increase the accuracy, performance,
and speed of implementing ANN, the target
input and output factors were normalized or
scaled linearly and made their values between
-land 1.

Various statistical parameters (Mean Square
Error MSE and coefficient of determination
the
performance of the developed ANN models.
The MSE 1is used as a benchmark for

R?) were calculated to evaluate

comparing aspects of error in the different
models. The R? is used to calculate standard
error in estimation methods that illustrate the
natural difference of the real data from the
estimated data. The following are expressions
of these statistical measures:

1 ~
MSE = ;Zlivﬂ(xi — %)% 4)
2 _ B @E-D -0
R TN @22V, (x-%)2 )
where:

N: The number of test observation

x;: The value of the variable being modeled
(observed data)

X,: The value of variable modeled by the
model (predicted)

X: The mean value of the variable

Fig. (1): Three-layered artificial neural network architecture

Input Layer
/ Tire
@ure / \
[ Forward "\

Speed

[ Tillage

N y %

[ Moisture

w\tent /

Results & Discussion

Bulk density

Mathematical models

A total of 270 field experiments were
conducted to obtain the best model for
predicting bulk density under different field

conditions (moisture content, tire pressure,

Hidden Layer
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Output Layer

Bulk Density

Cone index

forward speed and tillage depth. A collection
of various polynomial models were analyzed
using the Design-Expert software, to choose
more valid and dependable models. In order to
of
stepwise

optimize and minimize the number
candidate regression factors, a

regression algorithm was applied, as the most
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used variable selection
(Montgomery & Runger, 2014).

technique

ANOVA table was carried out to determine
the significant effects of studied parameters on
bulk density (Table 3). The results showed that
all studied parameters had a significant effect

on bulk density at probability value (equal to
0.0001). the ANOVA table
revealed a significant effect between
interactions of these parameters on bulk

Moreover,

density except for the interaction between
forwarding speed and plowing depth where it
was not significant.

Table (3) Analysis of variance for bulk density

p-value
Source Sum of Square df F-Value Prob > F
Model 16.14 10 169.57 <0.0001
A-Moisturecontent 5.76 1 605.58 <0.0001
B-Tire pressure 0.97 1 101.49 <0.0001
C-Tillage depth 7.64 1 802.40 <0.0001
D-Speed 1.07 1 112.64 <0.0001
AB 1.819E-4 1 0.019 0.0402
AC 0.079 1 8.26 0.0144
AD 6.977E-3 1 0.73 0.0327
BC 0.086 1 8.99 0.0030
BD 2.788E-4 1 0.029 0.0242
CD 2.047E-4 1 0.022 0.8835
Residual 2.46 259 000 000
Lackof fit 0.28 79 0.29 <0.0001
Pure error 2.18 180 ) '
Cor Total 18.60 269

Fig. (2) show that soil moisture content and
drive tire pressure effected on bulk density. As
the increase in moisture content from 14% to
24% led to an increase in the value of bulk
density by 4%. This is due to the fact that
increased moisture content increases the
attraction of soil particles due to the increase
in the surface tension between them and the
overlap of their water membranes, thus
increasing the bulk density and these results
are compatible with results obtained by
D'Acqui et al. (2020). The results also showed
that the air pressure inside the tire affects the
bulk density values. As the increase in tire
pressure from 50 kPa to 150 kPa led to an
increase of the bulk density by 2.3%, and the
reason for this may be that the increase in tire
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pressure led to a decrease in the area of contact
with the
compaction of the soil, thus increasing the

the ground, which increased
values of bulk density and these results are in
agreement with the findings of Antille et al.
(2013). The results also showed the double
interference of moisture content and tire
pressure on the bulk density. The percentage
of moisture content 14% and tire pressure 50
kPa gave the lowest value of bulk density,
which amounted to 1.308 Mg .m>. In addition,
the percentage of moisture content 24% and
tire pressure 150 kPa gave the highest value of
bulk density, amounting to 1.38 Mg.m?. It
may be attributed to the ratio of moisture
content 24% recorded the highest value of bulk
density, while the large tire pressure reduced
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the contact area between the tire and the field
soil, which increased the amount of pressure

Bulk density Mg. m™3

150

B:Tire Pressure 75
kPa

applied to the soil, and led to the compaction
of the soil.

16 A:Moisture content

50 14

Fig. (2). The effect of soil moisture content and tire pressure on bulk density

Fig. (3) shows the dual effect of soil
moisture and depth of tillage on bulk density.
Bulk density increased by 5% when increasing
the depth of tillage from 15 cm to 50 cm. The
reason for this is that increasing the depth
means more attachment of the plow to the soil,
as well as more soil facing it. On the other
hand, increasing the dynamic weight affecting
the rear wheels to achieve adequate traction,
thus increasing the pressure of the tractor tires
on the field soil, which leads to compacting the

Bulk density Mg. m™3

soil. The results also showed the dual effect of
both soil moisture and the depth of tillage,
where the lowest value of bulk density was
recorded at 14% moisture content, and the
depth of plowing was 15 cm, and it was 1.275
Mg .m>. While the highest value of bulk
density was recorded at 24% moisture content
and a depth of 50 cm, reaching 1.418 Mg .m™.
The reason for this is that both the soil
moisture and the depth of tillage are directly
proportional to the bulk density.

A:Moisture content

Fig. (3). The effect of soil moisture content and tillage depth on bulk density
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Fig. (4) shows the combined effect of soil
moisture and forward speed on bulk density.
Increasing the practical forward speed of the
tractor from 0.59 to 1.37 m.s”! led to a decrease
in the bulk density value by 4%. This is due to
the fact that the increase in speed means a
reduction in the time of the tires staying over
the field, which reduced the pressure of the
tractor tires on the field soil and thus Soil bulk
density decreased and these results are in
agreement with the results
Shahgholi & Abuali (2015).

obtained by

The results showed that the lowest value of
bulk density was recorded at 14% moisture
content and forward speed 1.37 ms™, and it
was 1.30 Mg .m. Whereas, the highest value
of bulk density was recorded at 24% moisture
content and 50 cm depth, and it was 1.382 Mg
.m>. The reason for this is attributed to the fact
that the velocity of 1.37 ms™! recorded the
highest value of the bulk density while the low
soil moisture maintained the strength of the
soil against the force imposed on it
(Taghavifar & Mardani, 2014).

145

-
SN

1.35

Bulk density Mg. m™3

A:Moisture content

14 137

Fig. (5) shows a combined interaction of
both tire pressure and depth of tillage and their
interactions in bulk density values. The results
showed that there is a direct relationship
between tire pressure and bulk density.
Increasing the tire pressure from 50 to 150 kPa
resulted in an increase in the bulk density
values by 2.3%. It is due to the decrease in the
area of contact of the tire with the field ground
which increases the pressure on the unit area
due to the increase in air pressure. The results
also indicated that the lowest value of bulk
density was recorded at a tire pressure of 50
kPa and tillage depth of 15 cm, and it was 1.31
Mg.m?. Whereas, the highest bulk density was
recorded at a tire pressure of 150 kPa and a
tillage depth of 50 cm, and it was 1.40 Mg.m"
3. The reason for this is attributed to the
combined effect of these two factors, where
the depth of 50 cm increased the dynamic
weight of the tractor wheels, while the tire
pressure 150 reduced the contact area and thus

increased soil compaction and thus increased
bulk density.

0.59
0.78

0.98

1.18 1
D:speed m.s™

Fig. (4): The effect of soil moisture content and forward speed on bulk density
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Bulk density Mg. m™3

B:Tire Pressure
kPa

Fig. 5. The effect of tire pressure and tillage depth on bulk density

Fig. (6) illustrates the effect of tractor
forward speed, tire pressure, and their
interactions on bulk density values. The lowest
bulk density value was recorded at the highest
forward speed used in the experiment, 1.37
m.s™!, and the lowest tire pressure was 50 kPa,
and it was 1.325 Mg.m?. Whereas, the highest
bulk density value at the highest tire pressure

Bulk density Mg. m ™3

B:Tire Pressure

kPa

is used 150 kPa and the lowest forward speed
of the tractor is 0.59 m.s !, which is 1.365 Mg
.m. The reason for this is that the high speed
reduces the time of the tractor remaining on the
field ground while reducing the tire pressure
increases the contact area and thus reduces the
bulk density values. These results are in
agreement with Shahgholi & Abuali (2015).

1.18 1

D:speed m.s™

50 1.37

Fig. (6): The effect of tire pressure and forward speed on bulk density

Fig. (7) shows an amount of effect on bulk
density when any of the four influencing
factors (moisture content, tire pressure, depth

of tillage, and forward speed of the tractor)
changes independently. It was found that the
most important factor in relation to the bulk
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density is the depth of plowing and its effect is It is also noted that the relationship of soil
6%. The results showed that the next factor moisture, tire pressure, and depth of tillage
affecting the bulk density is the moisture was positive with bulk density, while the
content by 4%, then the forward speed of the relationship was inverse between forward
tractor by 2.4%, while the tire pressure comes speed and bulk density.

in the fourth-order with an impact rate of 2%.

Perturbation
H_r: Moisture content
B: Tire pressure o
C: Tillage depth
137 —D: speed A
D B

134 —

B oo —— D
131

c—

128 —

Bulk density Mg. m™3

125 —

1 | I 1 1
-1.000 0.500 0.000 0.500 1.000

Deviation from reference point (coded units)

Fig. (7): The effect of studied factors on bulk density

The predicted values of bulk density were speed, and their interactions (Fig. 8). Which
found by adopting and introducing all the gave the best results based on the value of the
factors under study, namely soil moisture coefficient of determination, which is R? =
content, tire pressure, depth of tillage, tractor 0.8675 under different field conditions.

R?=0.8675 __Predicted vs. Actual

1.50 —

145 —

140 —
T
v
€ 135
2
g
o 130

125—

120 —

| | | | | | I
120 125 130 135 140 145 150
Actual

Fig. (8). Relationship between the predicted bulk density and the field-calculated bulk density
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The fitted model for the bulk density is represented in Eq. 6:

Dry Bulk Density

1.77 + (0.02 * moisture content) + (7.45E — 004 * tire pressure)

+ (3.06E — 003 = tillage depth) — (0.15 * speed) + (4.02E — 006

* moisture content * tire pressure) + (1.830E — 004 * moisture content

* tillage depth) — (3.19E — 003 * moisture content * speed) + (2.34E — 005
* tire pressure * tillage depth) + (7.81E — 005 * tire pressure * speed)

+ (1.46E — 004 = tillage depth * speed)

ANN Model

Table (4) shows the best topology and
statistical parameters for ANN models using
different bulk density training algorithms. As
a whole, all training algorithms showed
satisfactory results. Levenberg-Marquardt
(Trainlm)  produced an  outstanding

performance with an MSE of 0.00226 and R?

(6)

of 0.986. Moreover, this performance was
occurring at an epoch of 100. Hence, the best
model for predicting the bulk density under
different the 4-8-1
architecture. The weakest among training

field conditions is
algorithms was Graded origin with momentum
(train-gdm) with topology 4-1-1, epoch of 99,
R? 0f 0.953 and MSE of 0.01195.

Table (4): Different ANN structures for bulk density prediction

Training Algorithm Optimum Epochs MSE R?
topology

Levenberg-Marquardt (Train-lm) 4-8-1 31 0.002263 0.986
Bayesian regulation (train-br) 4-6-1 46 0.004757 0.973
Ra‘Flos graded with adaptive learning rate 4-7-1 99 0.007283  0.966
(train-gda)

Resilient (train-rp) 4-9-1 96 0.009293  0.960
Graded origin with momentum (train-gdm) 4-1-1 99 0.011956 0.953

Fig. (9) shows the regression between actual
and expected values of bulk density under
different field
validation, testing and all data sets. Where R
values were equal to 0.9930, 0.9959, 0.9933
and 0.9935 for training, validation, testing, and

conditions for training,

all data, respectively. The inconsiderable
difference between the expected and actual
values confirmed the reliability of the network
in predicting the bulk density.
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Fig. (10) shows the result of the regression to
train the neural network for MSE for all epochs
the
performance in reaching the best results. The

and notes speed of the network's
value of the epochs was equal to 31. After this
value is noted the stability of the mean square
error curve, and this is an indication of the
network reaching to appropriate and sufficient
training.
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Table (5): Analysis of variance for cone index

Sum of p-value
Source Square df F-Value Prob > F
Model 2.419E+005 10 341.12 < 0.0001
A-Moisture content 29359.19 1 414.01 < 0.0001
B-Tire pressure 10586.85 1 149.29 <0.0001
C-Tillage depth 1.816E+005 1 2561.03 <0.0001
D-Speed 5536.19 1 78.07 < 0.0001
AB 34.52 1 0.49 0.4860
AC 4903.23 1 69.14 0.0001
AD 119.90 1 1.69 0.1946
BC 2056.39 1 29.00 0.0001
BD 151.74 1 2.14 0.1447
CD 126.52 1 1.78 0.1828
Residual 18366.78 259 000 000
Lack of fit 10069.91 79 2.77 <0.0001
Pure error 8296.87 180
Cor Total 2.603E+005 269
Train Data: R=0.99309 Validation Data: R=0.99594
m 1 i j j -
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? 05k ~——--- Y=T @) 2 04| - - ___ Y=T %@G E
® 4§ o2 )
5 £ o 96
£ of e Jois
2 § o2 P
?' 0.5} c't" o4 @
-g- ) g 06 %6@3
8 §' -0.8 & e
b 05 0 05 1 0.5 0 0.5
Target Target
Test Data: R=0.9933 All Data: R=0.99351
§ o.8f Q : ‘ ‘
] Data § Data
- 06 Fit 3
O_: 04r Y=T +
B ool °
8 o &
x S C
15 -0.6+ O -S B
f e :
0.5 0 0.5 T 05 0 0.5 1
Target Target

Fig. (9). Regression analysis for bulk density prediction based 4-8-1 topology and Levenberg-

Marquardt training algorithm
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Best Validation Performance is 0.0022646 at epoch 31
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Fig. (10): Regression result of neural network training for MSE of all epochs for bulk density

Cone index

Mathematical models

As shown in table (5), moisture content, tillage
depth, tire pressure and forward speed had a
significant effect on cone index (p<0.0001).
The
content- tillage depth and tire pressure - tillage

interactions between soil moisture
depth were significant. As for the rest of the
interactions, they did not have a significant
effect on the cone index. But the lack of fit was
significant (p<0.05), which means that the
model cannot be applicable to the data. Fig.
(11) shows the relationship between soil
moisture content and tire pressure on the cone
index. The results showed that there was a
significant effect of tire pressure and soil
moisture, while their interactions had no
significant effect on the values of soil
penetration resistance (cone index). Increasing
the tire pressure from 50 kPa to 150 kPa led to
an increased in the cone index value by 8%.
The reason for this may be that the increase in
tire pressure led to a decrease in the area of
contact with the ground, which increased the

soil pressure, thus increasing the values of soil
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penetration resistance. These results are
consistent with the findings of Pagliai et al.
(2003) and Zhukov (2015). The results also
showed that soil moisture affected soil
penetration resistance values, as increasing the
moisture content from 14% to 24% led to a
decrease in the soil penetration resistance
value by 13.5%. The reason for this is that the
increased moisture content has weakened the
soil. In addition, the water membranes around
the soil particles acted as a lubricant, which
greatly contributed to reducing the friction
Thus

facilitating the penetration of the cone into the

between the cone head with soil.

soil. These results correspond with those
obtained by Tang et al. (2016). The results also
indicated the effect of the bilateral interaction
between tire pressure and soil moisture
content, which was not significant. The
pressure of 50 kPa and the moisture content of
24% gave the lowest value of soil penetration
resistance of 3.2 MPa. Whereas, the moisture
content of 14%
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Cone index (Mpa)

A:Moisture content(%) 22

24

150

75

B:Tire Pressure

50 (kPa)

Fig. (11): The effect of moisture content and tire pressure on cone index

and the pressure of 150 kPa gave the highest
value of soil penetration resistance, reaching
4.15 MPa. The results showed a highly
significant effect of the depth of tillage and soil
moisture and their interactions on the values of
soil penetration resistance (Fig. 12). Increasing
the tillage depth from 15 cm to 50 cm led to an
increase in the penetration resistance of the
soil by 27%. This is due to the fact that
increasing the depth means increased tire
slippage, which increases soil compactness. In
addition, the increased required force for
traction led to increasing the vertical force of
the tires per area unit, so the compaction

Cone index (Mpa)

increases on the field soil and thus increases
the values of soil resistance to penetration. The
results also showed the dual effect between the
depth of tillage and the soil moisture content
on the values of soil penetration resistance.
The highest value of soil penetration resistance
was recorded at 14% moisture content and 50
cm tillage depth of 4.7 MPa. The lowest value
of soil penetration resistance was recorded at
24% moisture content and 15 cm depth and
was 3.2 MPa. The reason for this is attributed
to the positive effect of increasing the depth
and the negative effect of increasing the
moisture content in increasing the cone index.

Fig. (12): The effect of moisture content and tillage depth on cone index
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The results showed a highly significant
effect of soil moisture and the forward speed
of the tractor, while their interactions did not
affect the value of soil penetration resistance
(Fig. 13). Increasing the forward speed of the
tractor from 0.59 to 1.37 m.s' reduced the
value of soil penetration resistance by 11%.
The reason for this is that increasing the speed

Cone index (Mpa)

0.98
D:speed (m.s™1) 118

137 24

means a reduction in the time of staying tires
over the field ground, which reduced the
chance of the tractor tires being compressed on
the field soil and thus decreased the values of
soil penetration resistance. These results are
consistent with the results obtained by

Taghavifar & Mardani (2014).

20

22 A:Moisture content(%)

Fig. (13): The effect of moisture content and forward speed on cone index

Fig. (14) shows the relationship between tire
pressure and depth of tillage and their overlaps
on the cone index. The results showed that
there was a significant effect of tire pressure,
tillage depth, and their interactions on the cone
index values. The highest value of soil
penetration resistance was recorded at a tire
pressure of 150 kPa and depth of 50 cm, with
a value of 4.2 kPa. The lowest value of soil
penetration resistance was recorded at a
pressure of 50 kPa and a depth of 15 cm, and
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it was 2.4 kPa. The reason for this is that the
depth of 50 cm recorded the highest traction
force. The draft force increases the dynamic
weight of the tires on the soil surface and thus
increases the compaction of the soil under the
tires. On the other hand, the increase in tire
pressure led to a decrease in the contact area
between the tire and the soil, consequently
increased soil compacting. These results are in
agreement with Btaszkiewicz (2019).
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Cone index (Mpa)

B:Tire Pressure
(kPa)

Fig. (14): The effect of tire pressure and tillage depth on cone index

Fig. (15) shows the magnitude of the effect
on soil penetration resistance (cone index)
when any of the influencing factors (moisture
content, air pressure, depth of tillage, and
forward speed of the tractor) change
independently. It was found that the most
important factor for soil resistance to
penetration is the depth of tillage and its
impact ratio is 6%, followed by moisture
content, tire pressure, and forward speed by

4%, 2.4%, and 2%, respectively. These results

are in agreement with the findings of Naranjo
et al. (2014) who showed that increasing the
depth affects the accumulation of soil in front
of the wheels, which leads to an increase in
penetration resistance. The results also showed
that the effect of both tire pressure and tillage
depth was directly affected by the cone index.
On the other hand, the effect of both soil
moisture and forward speed was inversely
affected by the cone index.

Perturbation

5 : Moisture content

D: speed

4 —

B: Tire pressure
45-]C: Tillage depth

g\

3

Coneindex (Mpa)

L

25—

2

35— §___--/7
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/B
——
—_— A

T
-1.000

1
-0.500
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0.000 0.500
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Fig. (15): The effect of studied factors on cone index

The relationship between the predicted
values of soil penetration resistance was found
by adopting and introducing all the factors
under study, namely soil moisture content, tire
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pressure, depth of tillage, tractor speed and
their (Fig. 16).
dispersion of the data around the unit slope line

interactions The close

confirms the excellent performance of the
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developed model with a coefficient of

determination (R?) = 0.9294 under different
field conditions.

The appropriate model for the cone index is
represented in Eq.7, in which the coefficients
are in the coded unit form.

Cone index = 48.30 + (—1.20 * moisture content) + (0.04 * tire pressure) + (2.01 *
tillage depth) — (25.22 * speed) — (1.75E — 003 * moisture content *
tire pressure) — (0.04 * moisture content * tillage depth) + (0.41 *

moisture content * speed) + (3.63E — 003 = tire pressure
tillage depth) + (0.05 * tire pressure * speed) — (0.11 *

tillage depth * speed)

(7)

Predicted vs. Actual

s 00— R%=0.9294

4.00 —

300 —

Predicted

200 —

0.00 —

Fig. (16): Relationship between the predicted and the actual of cone index

ANN models

Table (6) shows the optimal structure and
statistical criteria of ANN models using
different The best
performance was achieved by Levenberg-

training algorithms.
Marquardt (trainlm) in 85 epochs, giving
minimum MSE equal to 0.005112 and greater
(R?) equal to 0.967 during the training process.
Thus, the optimal structure for predicting the
cone index was 4-7-1. The results also
illustrated the rest of training algorithms used
in prognostication of cone index was
acceptable and reliable except Resilient
(trainrp) which gave the highest MSE and
lowest R? compared with other algorithms by
0.079532 and 0.82, respectively. On the other
hand, Graded origin with momentum (train-

gdm) did not answer predicting cone index.
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Fig. (17) Illustrates the performance of the
training network. It is evident from this figure
that the MSE of training decreased with
increasing the training period up to 92. After
this value, the MSE of training was stabilized.
Fig. 18 shows the correlation between actual
and expected values of the cone index under
different working conditions for training,
validation, testing, and all data sets. The small
between the
measured values emphasized the reliability of

difference predicted and
the network in predicting the cone index.
These results are consistent with the findings
of Santos et al. (2012) who confirmed the
ability of neural networks to predict soil

penetration resistance.
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Table (6): Different ANN structures for cone index prediction

Training Algorithm Optimum Epochs MSE R?
topology

Levenberg-Marquardt 4-7-1 92 0.005112  0.967
(Trainlm)
Bayesian regulation 4-9-1 87 0.006591  0.943
(trainbr)
Ratios graded with
adaptive learning rate 4-8-1 99 0.043211 0.906
(train-gda)
Resilient (train-rp) 4-5-1 96 0.079532 0.820
Graded origin with Not answer i i i

momentum (train-gdm)

Best Validation Performance is 0.0051123 at epoch 92

M
7]
E

|

£ I

g . |

w 10 !

|

g Train !

" n |

g Validation |

o Test !

-6

”:, 10 - - - ~Best :

é - -~ -Goal I

|

|

-8 !

10 !

|

|

1 1 1 1 1 1 1 1 Ll |
0 10 20 30 40 50 60 70 80 90 100

100 Epochs

Fig. (17): The best validation performance of training LM to predict cone index

Table (7): Comparison of statistical performance between mathematical models and ANN for
soil compaction criteria

. . Mathematical model ANN model
Soil compaction
criteria MSE R? MSE R2
Bulk density 0.002435 0.8675 0.002263 0.986
Cone index 0.907634 0.9294 0.005112 0.967
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Fig. (18): Correlation between actual and predicted values of cone index in training, test,

validation and all data sets

Table (7)
obtained from mathematical models and ANN

illustrates the best results
models for studied parameters in this research
with statistical criteria (MSE and R?). The
results show that all models had an acceptable
performance for predicting soil compaction
parameters (bulk density and cone index)
But the
premium model yielded by ANN technique
with MSE of 0.002263 and R? of 0.986 for

under various field conditions.
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bulk density. Artificial intelligent models
(ANN) outperformed mathematical models for
predicting cone index. ANN model produced
the premium performance with MSE of
0.005112 and R? of 0.967. This is consistent
with what was found by Almaliki et al. (2019)
during their study to predict the tractive
efficiency.
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Conclusion

In this research, intelligent computational
(artificial neural networks and Design Expert
software) were used to predict soil compaction
criteria (soil bulk density and cone index).
Various training algorithms were tested by
using Backpropagation neural networks. MSE
and R? were approved as statistical criteria for
evaluating soil compaction. It was found that
the smart computing methods used achieved
satisfactory results for predicting soil
compaction parameters. Levenberg-Marquardt
(trainlm) gave the best performance in training
the neural network for predicting soil density
and cone index compared to the rest of the used
algorithms. Bulk density increased with
increasing plowing depth, tire pressure, and
soil moisture, while it decreased with
increasing the forward speed of the tractor. On
the other hand, increasing the front speed of
the tractor and soil moisture reduced the cone
index, while it tends to rise with increasing
When

comparing the performance of neural networks

tillage depth and tire pressure.

and mathematical models, it is noted that
neural networks are superior to predicting soil
compaction parameters. In general, it is
possible to use ANN models to predict soil
performance due to their excellent speed and

accuracy of results.
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