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Abstract: The present work aims to study the development and application of Radial Basis 
Function (RBF) networks for predicting auger energy consumption based on input energy. 
The study utilized RBF networks and explored the input energy with treatments 2 (Soil 
moisture content), 2 (Rotary speeds), 2 (Hole depths) and 4 (Replication) based on field 
operations. As indicated by the results, energy input differed between the treatments but was 
not significant. The highest input value in transaction soil moisture content was 14.75 %, 
rotary speeds of 235 rpm, and hole depths of 40 cm. In comparison, the lower input energy 
at transaction soil moisture content was 7.9%, rotary speeds of 235 rpm, and hole depths of 
20 cm. Input energy in treatment (14.75 %, 235 rpm, and 40 cm) and treatment (7.9 %,235 
rpm, and 20 cm) were 100.204 and 57.135 MJ. ha-1, respectively. The highest input energy 
shares were recorded for diesel fuel at all treatments. Furthermore, the RBF network with one 
hidden layer had good convergence. The output results showed 10 and five hidden neurons 
in a hidden layer with high accuracy for treatment (14.75 %, 235 rpm, and 40 cm) and 
treatment (7.9%, 235 rpm, and 20 cm). In the treatment (14.75 %, 235 rpm, and 40 cm), the 
MSE for the training and testing sets was 0.0001 % and 0.01 % for data points with Ordinary 
RBF (ORBF type). The performance of the 3-10-1 architecture was better than other 
architectures. Finally, this research concluded that the RBF network method can forecast the 
input energy and energy expenditures related to the types of treatments. 
Keywords: Auger, Hidden Layer, Human Energy, Rotary Speeds, Soil Moisture. 

Introduction 

Iraqi olive trees have grown in the region for 
more than five hundred years. Northern Iraq is 
the largest olive production area in the country. 
The latest data available from the Ministry of 
Agriculture, Iraq has a minimum of 600,000 
fruiting trees concentrated in the Bashiqa area 
in Nineveh governorate, Iraq. In 2011, the Iraqi 
olive sector production ranged from 10,000 to 
12,000 metric tons of table olives annually, 
constituting only 30% of domestic 
consumption (USAID, 2011). The current 

olive production reached 34.501 tons, with an 
annual production rate 19 kg. tree-1. The Iraqi 
Central Statistics Office showed that olive 
trees came to 1.341.339 tree in northern and 
central Iraq (Al-Rubaie & Abdulhay, 2022). 
Until the last ten years, the olive has never 
been included as a strategic crop in the 
development plan for Iraqi production. 

More recently, the Ministry of Agriculture 
recognized the potential for olive production 
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and initiated several programs to develop 
nurseries to produce olive tree saplings to 
improve olive production practices throughout 
Iraq. It has distributed over one million Greek 
varieties of saplings to farmers to establish 
new groves to improve olive production 
practices throughout Iraq. As well as the Iraq 
Ministry of Agriculture (MoA) plans to plant 
30 million olive trees. At the same time, the 
Iraqi olive industry began to grow and flourish. 
The farmers and the investors made plans to 
develop a sustainable olive oil industry. 
Therefore, Iraqi farmers and investors will 
have to the expand the olive production in the 
area by reducing production and packaging 
costs to make Iraqi olive oil more competitive 
with imported olive oil (Al-Rubaie & 
Abdulhay, 2022). 

Growing olives in the fields is a slow and 
arduous process. Agricultural mechanization 
can reduce labor dependency, increase farm 
productivity, and hasten field operations 
(Balkan, 2019). The mechanical operation of 
olive orchard includes three to four stages such 
as, lining, holing for plantation, transporting 
the seedling from the nurseries to the farm, 
transporting the seedling to the planting hole, 
and finally planting the seedling to a hole (El-
Gendy et al., 2009; Lo Bianco et al., 2021). 
Unfortunately, most of the olive cultivation 
operations in Iraq were done manually. For 
instance, the planting hole is either prepared 
manually with a hoe, which consuming a long 
time before planting the seedlings. 

The most time-consuming operation for 
digging the planting hole was about 30.05% of 
the total time, whereas conveying the seedling 
was the least time-consuming. Introducing an 
auger for olives growing activities can 
facilitate the agricultural process, reduce the 
hard effort, and ensure the quality of nursery-
grown plants (El-Gendy et al., 2009). The hole 
depth and diameter by auger can well meet the 

standard of planting tree. The hole diameter 
and walls with a good verticality and quite 
regularly will improve the growth of the root 
system. It can work effectively on frozen and 
super hard soil, so the digging unearthed rate 
can achieve more than 90% (Su, 2016).  

Energy consumption is the primary factor 
that affects crop yield. Farmers face challenges 
in selecting energy inputs for planting (Pokhrel 
& Soni, 2019). The auger consumes diesel fuel 
or gasoline to run the engine. However, it also 
uses other energy to operate, including human 
power and oil. In a drill, the primary factors 
that impact energy consumption are increasing 
the speed of the motor or PTO, hole cross-
section, moisture content, soil strength, and 
hole depths (Joshi et al., 2020; Khalilidermani 
& Knez, 2022). 

Predicting is essential to model the energy 
consumption of the farming process. It gives 
the dynamic conditions of energy consumption 
in the agriculture operation. Recently, farmers 
and investors desperately need accurate 
forecasts. However, the current modeling of 
these predictions is far from convincing with 
these significant developments and challenges 
in agriculture. There is no well-defined 
forecasting method that considers the variables 
that drive the yield (Al-Rajabo et al., 2021).  

In a non-linear model, the problem becomes 
more complex when there are additional 
independent variables. In light of the 
complexity of these relationships, traditional 
data-processing techniques cannot 
satisfactorily investigate the process and 
product parameters because of non-linear 
relationships among the variables (Hilal et al., 
2021). Non-parametric model methods can 
address this issue as they are powerful 
predictive tools.   

The popularity of artificial intelligence is 
related to its great benefits over conventional 
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models. The use of models has increased 
rapidly over years, in a wide range of sectors 
(private strip, research, and government) and 
many various areas of application (natural 
sciences, agriculture and water management, 
energy and renewable energy, etc.). RBF is a 
branch of the science of science artificial 
intelligence and is a tool that to solve the 
problems, especially in fields that involve 
clustering and pattern recognition (Mirjalili, 
2019; Kamir et al., 2020). RBF networks are 
using calculations easier, so this method can 
learn faster and have a smaller error than the 
other neural networks (Rocha & Dias, 2019). 

Exploratory research on auger processes 
and artificial intelligence revealed little 
research has published on the olives orchards. 
As indicated in the review, no study has been 
published in relation to energy analysis 
through using RBF neural networks, 
particularly about Iraqi olives planting. The 
objectives of this project were to (1) develop 
an RBF neural network model to predict 
energy consumption based on rotary speeds, 
hole depths, and soil moisture content, and (2) 
quantify the input energy for the auger 
processes based on the olives fields. 

Materials & Methods 

Experiments Site: The field investigations 
were conducted on an experimental plantation 
in Nineveh province, Iraq. These farms are 
located within 43°15'52.02"E longitude and 
36°30'27.85"N altitude, as displayed in fig. (1). 
The soil texture at the site of experiment was a 
Loam (44.05 Sand, 14.45 Clay, and 41.5 Silt) 
and a soil pH of 7.6. Average climate 
characteristics during the experimental period 
are given in table (1). 

 
 

 

Fig. (1): The study sites (43°15'52.02"E, 
36°30'27.85"N) 

Table (1): Average monthly climate in most 
areas (World Weather Online, 2017–2021) 

 

Olive machine and experimental design  

The earth auger was selected according to 
considerations to be given to local olive 
patterns, timeliness factor of the olive 
cultivation area, soil type, farm size, plot size, 
and some different conditions. The study was 
conducted at one farm with one treatment of 
other olive planting methods. The number of 
240 holes per hectare was chosen according to 
the cultivation method used in the region (Fig. 
2). The auger specification was used for holes 
as described in table (2). 

 
Nineveh 

Temperature
s (°C) 

Precipitation 
(mm) 

Average 
cloud 
(%) 

Average 
Humidity 

(%) 
Jan 10 257.5 40 62 
Feb 11 180.7 43 62 
Mar 13 341.3 50 66 
Apr 25 166.3 43 58 
May 30 21.5 16 33 
Jun 40 0.8 5 19 
Jul 48 0 1 18 
Aug 46 0 0 16 
Sep 34 0.98 2 17 
Oct 27 113.2 34 33 
Nov 17 113.4 41 56 
Dec 10 316.8 49 68 
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Fig. (2): Auger used in the field 
experiments. 

Table (2): The specifications of earth 
auger. 

Model No GT-4350 

Engine model 1E44F-5 

Engine type  Single cylinder, air-cooling, 

2-stroke 

Gasoline, 2-cycle oil 

mixture ratio 

58CC 

Ignition system C.D.I 

Power 4.5kw 

Fuel tank capacity  1.2L 

Auger size (max) 300mm 

G.W/N.W (without 

auger bit) 

10.8Kg.9.7Kg-1 

 

The field layout's Randomized Complete 
Block Design (RCBD) was taken. The subjects 
were taken as blocks. The experiment field is 
divided into uniform units to account for any 
variation so that observed differences are 
mainly due to actual differences between 
treatments. The treatments (2×2×2×4) (Soil 
moisture content, Rotary speeds, Hole depths, 
and Replication) were randomized to minimize 
the effects of variation of different treatments 

due to other field conditions. The SAS® 
Visual Data Science Decisioning experiment 
was used to analyze the experiment's statistical 
package and statistically significant 
differences between the mean values (p-value 
0.05). 

Input energy data 

This study estimate the energy consumed to 
dig a pit for planting olives has been assessed. 
The input energy was used to develop energy 
prediction models and select the essential 
variables in the energy utilized in Iraqi olive 
production. The input data was converted into 
forms of energy for the evaluation of the input 
analysis as presented in the equations (Table 
3). Energy consumption for human labour, 
fuel, and lubricating oil was calculated per 
total hectare basis in each olive farm. 

RBF Modelling: The RBF procedure treats 
the target vector ( 𝑌𝑌(𝑚𝑚)) as the dependent 
variable and the input vector (predictors, 𝑋𝑋(𝑚𝑚)) 
are factors. 

𝑋𝑋(𝑚𝑚) = 𝑋𝑋1𝑚𝑚, … … . . 𝑥𝑥𝑃𝑃
(𝑚𝑚) 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚,𝑚𝑚

= 1, … … .𝑀𝑀. 

  𝑌𝑌(𝑚𝑚) = 𝑌𝑌1
(𝑚𝑚), … . .𝑦𝑦𝑅𝑅

(𝑚𝑚) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚. 

The RBF neural network consists of three 
layers, including an input layer, an output 
layer, and a hidden layer called the radial basis 
function layer (Wu et al. 2021): 

1- Define variables in the input 
layer: J0=P units, a0: 1..., a 0: J0; with a 0: 

j=xj.  

2- Hidden layer: J1 units, a1: 1..., a1: J1; 
with a1: j=φj(X) and φj(X).  

3- Define variables and equation in the 
output layer:  

J2=R units, aI: 1..., a I: J2; with: 𝑎𝑎𝐼𝐼:𝑟𝑟 =
𝑤𝑤𝑟𝑟0 + ∑ 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑋𝑋)𝐽𝐽1

𝑗𝑗=1 . (2.1) 
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Ordinary RBF (ORBF) and Normalized 
RBF (NRBF) are two distinct types of 
Gaussian RBF architectures. In NRBF 
networks, the foundation function takes the 
form: 

  
(2.2) 

As well, in ORBF, the Gaussian foundation 
function takes the form: 

                                                                       
(2.3) 

The default RBF network settings and basic 
specifications as shown in fig. (3). 

 

Table (3): Energy consumption equations and references 

 

Equations Energy equivalent 
references 

Human energy = Farm labor hours x equivalent human energy input for a 
typical worker (MJ.h-1) 

(Ghasemi-Mobtaker et 
al.,2020) 

Fuel energy = Fuel consumption by auger (l) x  Energy equivalent   (MJ.l-1) (Kitani & Jungbluth, 
1999) 

Oil energy =  Oil consumption by auger (l) x Energy equivalent ( MJ.l-1) (Al-Rajabo et al., 2021) 
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Fig. (3): Neural network settings (**default settings in the program) 
   

Results & Discussion   

Analysis of energy inputs used in digging a 
pit for olive cultivation 

Three factors were statistically tested in the 
research work and the results drawn from these 
constitute the findings according to the 
overlapping transactions, as shown in table (4). 
The first factor speculated that soil moisture 
content would significantly affect work olive 
cultivation (fuel consumption, human labor, 
oil consumption). These results corroborated 
the finding of (Alzoubi et al., 2020), who 
conducted a study on soil moisture content and 
found that soil moisture would play a 

significant role in determining energy 
consumption in an agricultural field. 

The second result is that rotary speeds will 
not be a statistically significant factor affecting 
fuel and oil consumption. In contrast, rotary 
speeds played an essential element in human 
labor because auger rotation speeds 
significantly affected the effort of human 
labor. On the other hand, the result is that hole 
depths will be a statistically significant factor 
influencing the energy consumption of olive 
cultivation. These results are in line with 
Meselhy (2021) results, who found that a 
variable-depth tillage system has affected 
energy requirements.   

Dependent 
 

Start 

Data 

Independent 
 

Standardized** 

Training = {70**} Testing = {30**} Holdout 
  

Architecture [Min. units = {1}{Integer} Max. units = {20} 
 

Hidden Function = {NRBF **} and 
 

Criteria Overlap = 
{Auto**} 

Out File 
 

End 
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Table (4): ANOVA for the energy input. 

    

Input energy types in digging a pit for olive 
cultivation by soil moisture content, rotary 
speeds, hole depths, and energy equivalents are 
shown in fig. (4). Diesel fuel consisted of the 
highest energy share of total energy input, 
followed by human labour and oil 
consumption. Input energy for diesel fuel was 
lower with the treatment of soil moisture 
content 7.9%+ rotary speeds 235 rpm + hole 
depths 20cm than soil moisture content 7.9%+ 
rotary speeds 335 rpm + hole depths 40cm. In 
treating soil moisture content of 14.75%+ 
rotary speeds 235 rpm + hole depths 40cm, 
diesel fuel (0.372 MJ) consisted of the highest 
energy share of total energy input. The most 
human labour energy for augers in the 
treatments of soil moisture content is 7.9%. 
According to fig. (4), energy shares for 
treatment of soil moisture content of 7.9%+ 
rotary speeds 235 rpm + hole depths 40cm and 
treatment of soil moisture content of 7.9%+ 
rotary speeds 235 rpm + hole depths 20cm 
showed the highest from total human labour. 
The treatment of soil moisture content 
14.75%+235rpm+40cm + rotary speeds 235 
rpm + hole depths 40cm was the highest from 

oil energy used in olive cultivation. Ozpinar 
(2022) showed that olive cultivation utilized a 
high level of required diesel fuel energy, 
especially in intensive systems, due to 
machinery being extensively used for soil 
tillage, spraying, transportation, weed control, 
pruning, harvesting.... etc. 

Table (5) indicates no significant 
differences in all treatments included in the 
study. The total energy input for treatment 
(14.75%, 235rpm, and 40cm) in an olive pit 
was 100.204 MJ. ha-1, in which the highest 
shares were recorded for diesel fuel, human 
labor, and oil consumption, respectively (table 
5). 

Treatment (14.75%, 235rpm, and 40cm) 
was used for diesel fuel (89.4348 MJ. ha-1), 
consisting of the highest energy share of total 
energy input, followed by human labor (6.6542 
MJ. ha-1) and oil consumption (4.1148 MJ. ha-

1). The consumption of diesel referred to soil 
cultivation, weed control, and harvesting are 
the cultural practices that require more fuel 
(Cappelletti et al., 2014). 

Source DF 

Fuel consumption 
MJ 

Human labor 
MJ 

Oil consumption 
MJ 

                             
F Value   

                                
Pr > F 

                             
F Value   

                                
Pr > F 

                             
F Value   

                                
Pr > F 

Soil moisture content (a) 1 30.83 <.0001 383.82 <.0001 30.88 <.0001 
Rotary speeds (b) 1 0.19 0.6645 196.23 <.0001 0.17 0.6828 
Hole depths (c) 1 17.56 0.0004 412.17 <.0001 17.64 0.0004 
block 3 0.39 0.7613 2.91 0.0587 0.38 0.7667 
axb 1 2.66 0.1177 22.76 0.0001 2.69 0.1162 
axc 1 6.38 0.0197 46.26 <.0001 6.37 0.0197 
bxc 1 0.31 0.5859 0.00 1.0000 0.34 0.5655 
axbxc 1 3.48 0.076 0.09 0.7637 3.55 0.0735 
Error 21 MSE=167e-5  MSE=1.2e-7  MSE=3.52e-7  
Total 31       
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Fig. (4): Analysis of energy inputs used in an olive pit. 

The lowest input energy value was recorded 
when the soil moisture content of 7.9 % 
interfered with the rotary speeds of 235 rpm, 
hole depths 20 cm, and reached 57.135 MJ. ha-

1. This treatment was used for diesel fuel, 
human labor, and oil consumption of 48.0851, 
6.8371 and 2.2123 MJ. Hectare-1 of an olive 
pit, respectively. The results also showed that 
the lowest input energy of human work was 
recorded when the soil moisture content of 

14.75 % interfered with the rotary speeds of 
335 rpm, hole depths 20 cm, and reached 
5.1679 MJ. ha-1. Rajaeifar et al. (2014) studied 
the total energy consumption through the olive 
oil life cycle was 20 344 MJ.ha-1, and 
expanding the use of machines results 
indicated that the total energy consumption 
was 8035 MJ. ha-1. The results showed that the 
total energy input and output were 23 568 MJ 
ha−1.

Table (5): Analysis of total energy inputs used in an olive pit 

Soil 
moisture 
content 

% 

Rotary 
speeds   
rpm 

Hole 
depths   

cm 

Fuel 
consumption  

MJ. ha-1 

Human 
labour  

MJ. ha-1 

Oil 
consumption 

MJ. ha-1 

Total energy 
MJ. ha-1 

14.75 235 20 70.7026 5.5566 3.2529 79.512 
14.75 235 40 89.4348 6.6542 4.1148 100.204 
14.75 335 20 58.9680 5.1679 2.7130 66.849 
14.75 335 40 86.8140 6.2883 3.9942 97.097 

7.9 235 20 48.0851 6.8371 2.2123 57.135 
7.9 235 40 62.2440 7.4029 2.8638 72.511 
7.9 335 20 60.6060 6.0597 2.7884 69.454 
7.9 335 40 57.9852 6.6085 2.6678 67.261 

 

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000

14.75%+235rpm+20cm

14.75%+235rpm+40cm

14.75%+335rpm+20cm

14.75%+335rpm+40cm

7.9%+235rpm+20cm

7.9%+235rpm+40cm

7.9%+335rpm+20cm

7.9%+335rpm+40cm

Input energy 

Oil consumption Mj/unit Human labour Mj/unit Fuel cosumption Mj/unit
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RBF networks models 

Determine the optimum value of each 
parameter of a neural network by keeping the 
other parameter constant, is assumed different 
data for that parameter. In each case, the 
average value of error is calculated. Finally, 
the result with minimum error gives us 
optimum parameters. The most popular 
method for calculating error in RBF is Mean 
Square Error (MSE) (Pattanaik & Mohanty, 
2022). The algorithm adjusts the biases and 
weights of the neural network to minimize the 
MSE. In the present research, the MSE is 
adopted to determine the error of the resulting 
models. As shown in figs. (5 - 8), the network 
was trained in two distinct Gaussian RBF 
architectures, Ordinary RBF (ORBF) and 
Normalized RBF (NRBF). It is obvious from 
these figures that the value of MSE in very 

high iterations is almost constant. This process 
took a short time, and the variation of MSE 
was too slight. In order to solve this problem 
and improve generalization, early stopping is a 
need. 

It is evident in fig. (5) that the value of MSE 
is dropped very fast and suddenly from 0.078 
to 0.0001, in Ordinary RBF (ORBF)and from 
0.3 to 0.016 in Normalized RBF (NRBF). It 
was evident from this figure that for small 
training sets, convergence is perfect, also very 
fast, and error on the training set is driven to a 
small value. Still, the resulting error is 
significant when an increasing number of 
hidden neurons is presented to the network. 
The network has begun overfitting and has 
memorized the training examples (Wu et al. 
2021). 

 

 

Fig. (5): MSE of training versus the number of hidden neurons in treatment (14.75%, 
235rpm, and 40cm) 

    
In the present case, good convergence could 

not be achieved after a few trials with the 
network with 5 to 10 hidden neurons. 
However, good convergence has been 
completed for treatment in a network with ten 
hidden neurons in ORBF (14.75%, 235rpm, 
and 40cm). Fig. (6) shows a variation between 
the MSE of testing and different numbers of 
hidden neurons. This research-based on the 

above observation decided to select the 
number of hidden neurons equal to 10 in both 
types of RBF. The training results of the 
architecture of the RBF model were shown 
after the models had been successfully built 
and trained.  
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The results in figs. (5 and 6) show that 

ORBF used the training with three inputs (10) 
neurons in hidden layers (1) output 
architecture has the best performance in 
obtaining the network model compared with 
other training in treatment (14.75%, 235 rpm, 
and 40 cm). The best mean value of MSE was 
close to zero. In addition, the performances of 
this model were virtually independent of the 
differences among the quantities of neurons in 
the hidden layers (Mirjalili, 2019). Based on 
the evaluations summarized in fig. (7), the 
training error was reduced by increasing 
hidden neurons. A large number of hidden 
neurons driving a neural network can easily 
memorize the correct response to each pattern 
in its training set rather than learning a general 
solution. Therefore, there must be a critical 
number of hidden neurons to reduce the error 
rate. Figs. (7 and 8) show the effect of different 
numbers of hidden neurons on the MSE of 
training and testing. As a result of training, 

figs. (7 and 8) show the best RBF models are 
obtained at 5 of a hidden neuron with the 
Normalized RBF type to consider the lagged 
values of both dependent and independent 
variables that have been considered for model 
building in the treatment (7.9%, 235rpm, and 
20cm). In these, it can be seen that with an 
increasing number of hidden neurons, MSE is 
decreased, but variations in MSE values for 
more than 5 neurons increase. Wu et al. (2021) 
concluded that the prediction ability of the 
RBF is closely related to its number of 
artificial neurons. Therefore, the impact of the 
number of neurons on the prediction 
performance of the RBF model is investigated. 
On the other hand, utilizing more than 15 
neurons in a network makes the computation 
process complicated and expensive in terms of 
time. Accordingly, both MSE in ORBF were 
more than NRBF in the treatment (7.9 %, 235 
rpm, and 20cm).  

 

 
 

 

Fig. (6): MSE of testing versus the number of hidden neurons in treatment (14.75%, 235rpm, 
and 40cm). 
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Fig. (7): MSE of training versus the number of hidden neurons in treatment (7.9%, 235rpm, 

and 20cm) 
 

 
Fig. (8): MSE of testing versus the number of hidden neurons in treatment (7.9%, 235rpm, 

and 20cm) 

 

Conclusions 

A detailed study was carried out, considering 
one hidden layer and four numbers of hidden 
neurons for the architecture of the RBF net. 
The ORBF with 3-10-1 architecture performed 
was better than the other architectures for 
transaction soil moisture content was 14.75%, 
rotary speeds of 235rpm, and hole depths of 
40cm. In this case, the MSE was lower than in 
another case. Errors in another case were high; 
this can be due to overgeneralization during 
training. Moreover, this study examined the 
effects of different agriculture treatments on 
energy indices. Treatment (14.75%, 235 rpm, 
and 40cm) resulted in the highest input energy, 
and treatment (7.9%, 235rpm, and 20cm) in the 

lowest. Consequently, the accurate model can 
be improved by using RBF networks for 
predicting auger energy and managing the 
energy used to reduce production costs and 
maintain energy inputs. 
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 التنبؤ باستھلاك طاقة الة حفر جور لحقول الزیتون باستخدام الشبكات العصبیة الاصطناعیة 
 عثمان مؤید محمد توفیق ویوسف یعقوب ھلال وحسین عبد حمود عبد 

   العراق الموصل، جامعة والغابات، الزراعة كلیة  الزراعیة، والالات المكائن قسم

للتنبؤ �استهلاك طاقة الة   )RBFدراسة تطو�ر وتطبیق ش�كات دالة الأساس الشعاعي (یهدف العمل الحالي إلى  :  صستخلالم
حفر الجور بناءً على مدخلات طاقة. استخدمت الدراسة دالة الأساس الشعاعي وتم تقدیر طاقة المستهلكة عن المدخلات التي شملت  

اقع ار�ع مكررات بناءً على العمل�ات المیدان�ة. یتضح من  محتوى رطو�ة التر�ة وسرعات دوارة الة حفر الجور وأعماق الحفرة و�و 
النتائج ، اختلفت مدخلات الطاقة بین المعاملات ولكنها لم تكن معنو�ة . سجلت أعلى ق�مة مدخلات الطاقة عند المحتوى الرطو�ي 

عند  المحتوى  للمدخلةطاقة ت اقل  سم). بینما  �ان  40دورة/الدق�قة) ، وعمق حفرة (    235٪) ، وسرعة دوران�ة ( 14.75للتر�ة (  
سم) وسجلت �لا المعاملتین مدخلات الطاقة   20(   دورة/الدق�قة) ، وعمق الحفرة  235٪)، وسرعة دوران�ة (7.9الرطو�ي للتر�ة(  

ي  لوقود الدیزل ف   المدخلة طاقة  الم�جا جول لكل هكتار على التوالي. تم تسجیل أعلى حصة من    57.135و    100.204�مقدار   
خلا�ا   10و  5ذات الط�قة المخف�ة الواحدة لدیها تقارب جید وأظهرت نتائج ان    RBFجم�ع المعاملات. علاوة على ذلك ، فإن ش�كة  

دورة في الدق�قة    235٪ ،  7.9سم) و (  40دورة في الدق�قة ،    235٪ ،  14.75عصب�ة مخف�ة سجلت  دقة عال�ة لكلا المعاملتین  (
خطا    20،   اقل   و�ان  ( سم).  لمعاملة  والاخت�ار  التدر�ب  مجموعة   ،  14.75عند  و    ٪235  و�مقدار   40دورة/الدق�قة،  سم) 

أفضل اداء مقارنة مع  اله�اكل    1-10- 3٪ على التوالي. سجل ه�كل الش�كة العصب�ة لدالة الأساس الشعاعي  0.01٪ و  0.0001
ت دالة الأساس الشعاعي  �مكن أن تتن�أ �مدخلات الطاقة  الش�كات الأخرى. أخیرًا، خلص هذا ال�حث إلى أن  الش�كة العصب�ة ذا

 المستهلكة الى الة  حفر الجور وعند جم�ع المعاملات الدراسة.

 .الة  حفر الجور، الط�قة المخف�ة، الطاقة ال�شر�ة، سرعة الدوران، رطو�ة التر�ةالكلمات المفتاح�ة: 


