Main Article Content

Abstract

This study was undertaken to represent the December 2023 (Winter) and July 2024 (Summer) within the administrative confines of Karbala governorate, as part of the Southern Greenbelt Project. Three segments of the green belt were chosen to exemplify the environmental diversity of the area. The research report examined three extensively cultivated plant species in the study area: olive (Olea europaea), eucalyptus (Eucalyptus camaldulensis), and date palm (Phoenix dactylifera), to evaluate their efficacy in tolerating air pollution. Plants underwent APTI analysis using four biochemical parameters: total chlorophyll concentration, pH, relative water content (RWC), and ascorbic acid levels. This research aims to evaluate the tree species planted in the Southern Green Belt Project and to compare their effectiveness in mitigating air pollution, assessing their appropriateness for greenbelt initiatives. The aim of the research is to examine the efficacy of these plants in tolerating air pollutants. The findings indicated a substantial disparity between the locations and the seasons. The Air Pollution Tolerance Index for the eucalyptus plant had the highest APTI value, followed by the olive and palm species. The December 2023 yields superior outcomes compared to July 2024 for all plants. The distinction among plants based on the intensity of pollution to which they are subjected and the varying temperatures between seasons.

Keywords

Air pollution tolerance index (APTI) Air Pollution Greenbelt Environmental pollution Karbala

Article Details

How to Cite
Al-Hamd, J. H. ., & Jasim , S. N. (2024). A Comparative Analysis of Biochemical Indicators for air pollution in three Species Tree Planted Within the Greenbelt Project in Karbala province, Iraq. Basrah Journal of Agricultural Sciences, 37(2), 194–205. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1995

References

  1. Al-Hamd, J. H. H., & Alwan, N. M. (2020). Realistic evaluation of green spaces and falling dust rate in the city centre of holy Karbala, Iraq. Plant Archives, 20, 2852-2858.
  2. Alhesnawi, A. S. M., Alsalman, I. M., & Najem, N. A. (2018). Evaluation of air pollution tolerance index of some plant species in Kerbala city, Iraq. International Journal of Current Microbiology and Applied Sciences, 10(6), 1386-1390.
  3. Alhesnawi, A. S. M., Alsalman, I. M., & Najem, N. A. (2019). Some physical and chemical characteristics of dust falling on Kerbala city, Iraq. International Journal of Scientific & Technology Research, 14(6), 9340-9344.
  4. Alhesnawi, A. S. M., Alsalman, I. M., & Abd Najem, N. (2019). Some physical and chemical characteristics of dust falling on Kerbela City, Iraq. Journal of Engineering and Applied Sciences, 14(6), 9340-9344. https://doi.org/10.36478/jeasci.2019.9340.9344‎
  5. Al-Qaisi, M. R. Z., Abdul-Jabbar, R. A., & Al-Hussieny, A. A. (2019). Reduction of some heavy elements from polluted water using the biological adsorption technique by dry algae. Iraqi Journal of Agricultural Sciences, 50(4), 1162-1173. https://doi.org/10.36103/ijas.v50i4.760‎
  6. Aziz, H. H., Kadim, M. M., & Desher, M. A. (2019). Effect of organic compost on chemical parameters for two varieties of tomato plant (Solanum esculentium L.). Basrah Journal of Agricultural Sciences, 32(Special Issue 2), 262-271. https://doi.org/10.37077/25200860.2019.274‎
  7. Bharti, S. K., Trivedi, A., & Kumar, N. (2018). Air pollution tolerance index of plants growing near an industrial site. Urban Climate, 24, 820-829. https://doi.org/10.1016/j.uclim.2017.10.007
  8. Conklin, P. L. (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell & Environment, 24(4), 383-394.
  9. Esfahani, H. S., Mohaddes, K., & Pesaran, M. H. (2013). Oil exports and the Iranian economy. The Quarterly Review of Economics and Finance, 53(3), 221-237. https://doi.org/10.1016/j.qref.2012.07.001
  10. Gholami, A., Mojiri, A., & Amini, H. (2016). Investigation of the air pollution tolerance index (APTI) using some plant species in Ahvaz region. Journal of Animal and Plant Sciences, 26(2), 475-480.
  11. Hussain, H. N., & Jasim, S. N. (2019). Landscape design on the sides of the Baghdad-Babel road: An applied model for a rest area. Iraqi Journal of Agricultural Sciences, 50(4), 972-981. https://doi.org/10.36103/ijas.v50i4.741
  12. Kim, B. M., Park, J. S., Kim, S. W., Kim, H., Jeon, H., Cho, C., et al. (2015). Source apportionment of ‎PM10 mass and particulate carbon in the Kathmandu Valley, Nepal. Atmospheric Environment, ‎‎123, 190-199. https://doi.org/10.1016/j.atmosenv.2015.10.082‎
  13. Kirichenko, N., Augustin, S., Barham, E., Cech, T., Drenkhan, R., Morales-Rodríguez, C., et al. (2017). Damage to leaves of broadleaf woody plants. Field Guide for the Identification of Damage on Woody Sentinel Plants, 37-69. https://doi.org/10.1079/9781786394415.0037
  14. Kizar, A. H. F., Abdulsattar, A. M., & Abdulrasool, A. A. (2022). Study of emitted gases from ‎incinerator of Al-Sadr hospital in Najaf city. Open Engineering, 12(1), 102-110. ‎https://doi.org/10.1515/eng-2022-0016‎
  15. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 1-13. https://doi.org/10.3389/fpubh.2020.00014
  16. Manjunath, B. T., & Reddy, J. (2019). Comparative evaluation of air pollution tolerance of plants ‎from polluted and non-polluted regions of Bengaluru. Journal of Applied Biology & ‎Biotechnology, 7(3), 63-68.‎
  17. Maysoon, M. S., & Luma, S. A. (2017). Assessment of air pollution using air pollution tolerance index (APTI) by two species plant (Conocarpus lancifolius and Dodonaea viscosa) in Babylon province. Mesopotamia Environmental Journal, 3(2), 11-17.
  18. Mehmood, Z., Yang, H. H., Awan, M. U. F., Ahmed, U., Hasnain, A., Luqman, M., et al. (2024). Effects of air pollution on morphological, biochemical, DNA, and tolerance ability of roadside plant species. Sustainability,16(8). https://doi.org/10.3390/su16083427
  19. Nahum-Shani, I., Dziak, J. J., & Collins, L. M. (2018). Multilevel factorial designs with experiment-induced ‎clustering. Psychological Methods, 23(3), 458‎
  20. Ninave, S. Y., Chaudhari, P. R., Gajghate, D. G., & Tarar, J. L. (2001). Foliar biochemical features of plants as indicators of air pollution. Bulletin of Environmental Contamination and Toxicology, 67(1), 133-140. https://doi.org/10.1007/s00128-001-0101-3
  21. Nwadinigwe, A. O. (2014). Air pollution tolerance indices of some plants around Ama industrial complex in Enugu State, Nigeria. African Journal of Biotechnology, 13(11), 1231-1236. https://doi.org/10.5897/ajb2014.13616
  22. Padmavathi, M. (2013). Drug delivery system in Nano Greens. International Journal of Herbal Medicine, 1(3), 56-60.
  23. Patel, D., & Nirmal Kumar, J. I. (2018). An evaluation of air pollution tolerance index and anticipated performance index of some tree species considered for green belt development: A case study of Nandesari industrial area, Vadodara, Gujarat, India. Open Journal of Air Pollution, 7(1), 1-22. https://doi.org/10.4236/ojap.2018.71001
  24. Pathak, V., Tripathi, B. D., & Mishra, V. K. (2011). Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic-generated noise. Urban Forestry & Urban Greening, 10(1), 61-66. https://doi.org/10.1016/j.ufug.2010.06.008
  25. Qader, M. Q., & Shekha, Y. A. (2023). Role of environmental biotechnology in remediation of heavy ‎metals by using fungal-microalgal strains. Basrah Journal of Agricultural Sciences, 36(1), 16-28. ‎https://doi.org/10.37077/25200860.2023.36.1.02‎
  26. Ram, S. S., Majumder, S., Chaudhuri, P., Chanda, S., Santra, S. C., & Chakraborty, A. (2015). A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Critical Reviews in Environmental Science and Technology, 45(23), 2489-2522. https://doi.org/10.1080/10643389.2015.1046775
  27. Sahu, C., & Kumar Sahu, S. (2015). Air pollution tolerance index (APTI), anticipated performance index (API), carbon sequestration and dust collection potential of Indian tree species: A review. International Journal of Emerging Research in Management & Technology, 11, 2278-9359.
  28. Savage, J. A., Clearwater, M. J., Haines, D. F., Klein, T., Mencuccini, M., & Sevanto, S. (2016). Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology? Plant, Cell & Environment, 39(4), 709-725. https://doi.org/10.1111/pce.12602
  29. Singh, S. K., Rao, D. N., Agrawal, M., Pandey, J., & Naryan, D. (1991). Air pollution tolerance index of plants. Journal of Environmental Management, 32(1), 45-55. https://doi.org/10.1016/S0301-4797(05)80080-5
  30. Zhang, L., Zhang, Z., McNulty, S., & Wang, P. (2020). The mitigation strategy of automobile-generated fine particle pollutants by applying vegetation configuration in a street canyon. Journal of Cleaner Production, 274, 122941. https://doi.org/10.1016/j.jclepro.2020.122941