Main Article Content

Abstract

This study examined the genetic relationships among six species—chicken (Gallus gallus), quail (Coturnix coturnix), duck (Anas platyrhynchos), goose (Anseranser domestica), and turkey (Meleagris gallopavo) and rabbit (Lepus capensis), using partial mitochondrial cytochrome b (Cyt-b) gene sequences. PCR amplification of the mitochondrial Cyt-b gene resulted in an approximately 358 bp amplicon in size for all species, and sequences alignment and phylogenetic analyses were performed with Bio Edit and MEGA X software’s to determine genetic similarities and distances. Results revealed high nucleotide similarity between chicken and quail (89.1%) and chicken and turkey (83.6%). The closest genetic relationship was between duck and domestic goose, with 87.4% identity and the smallest genetic distance of 0.126. Chicken (Gallus gallus) demonstrated a relatively close relationship with both duck and domestic goose, with identities (83.6%). While, Turkey (Meleagris gallopavo) exhibited a slightly more distant relationship with avian species, with the lowest similarity at 81.6% with domestic goose. The rabbit, positioned at the root of the phylogenetic tree, exhibited the greatest genetic distance from avian species, with a 28.3% distance and 71.7% identity with chicken. This study provides solid evidence of the effectiveness of using Cyt-b gene sequences as a reliable tool for species identification across various applications, underscoring the effectiveness of partial Cyt-b gene sequences for avian species identification and genetic analysis, which is valuable for breeding and diversity studies.

Keywords

Cyt-b gene genetic distance,phylogenetic tree sequence analysis various species

Article Details

How to Cite
Ahmed, L. S. (2024). Genetic Relationships Analysis of Some various Species Using Cytochrome b Genes as a Phylogenetic Marker. Basrah Journal of Agricultural Sciences, 37(2), 240–248. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2000

References

  1. Abbas, A., Abbas, R.Z., Khan, M.K., Raza, M.A., Mahmood, M.S., Saleemi, M.K., Hussain, T., Khan, J.A. & Sindhu, Z.U.D. (2019). Anticoccidial effects of Trachyspermumammi (Ajwain) in broiler chickens. Pakistan Veterinary Journal, 39(2), 301-304. https://doi.org/10.29261/pakvetj/2019.056
  2. Abdul-Hanssan, I.A., & Tauma, J.A. (2014). Identification of some meat species using PCR and Multiplex PCR of Mitochondrial Cytochrome B Gene. Iraqi poultry sciences journal, 8(1),1-9.
  3. Ahmed, L.S. (2020). DNA Markers of Three Genes and Their Associations with the Meat and Egg Production Traits in Local Varieties of Quail in Kurdistan Region. Doctoral dissertation, Department of Animal Production, College of Agriculture Engineering Sciences, Salahaddin University-Erbil.Iraq.
  4. Ahmed, L.S., & Al-Barzinji, Y.M.S. (2019). Genetic Diversity among Local Quail Using RAPD-DNA Marker. Revista Cientifica de la Facultade de Veterinaria, 29(3).
  5. Andrasko, J. & Rosen, B. (1994). Sensitive identification of hemoglobin in bloodstains from different species by high performance liquid chromatography with combined UV and fluorescence detection. Journal of Forensic Sciences, 39(4), 1018-1025.
  6. https://doi.org/10.1520/jfs13680j
  7. Andrzej D., & Knapik, K. (2005). A new PCR-RFLP within the domestic pigeon (Columba livia var. domestica) cytochrome b (MTCYB) gene. Journal of Applied Genetics, 46(3),315-317.
  8. Ardura, A., Planes, S., & Garcia-Vazquez, E. (2011). Beyond biodiversity: fish metagenomes. PLoS One, 6(8), e22592.
  9. https://doi.org/10.1371/journal.pone.0022592
  10. Awad, A., Khalil, S.R., &Abd-Elhakim, Y.M. (2014). Molecular phylogeny of some avian species using Cytochrome b gene sequence analysis. Iranian journal of veterinary research, 16(2), 218-222.
  11. Bellis, C., Ashton, K.J., Freney, L., Blair, B., & Griffiths, L.R. (2003). A molecular genetics approach for forensic animal species identification. Forensic science international, 134(2-3), 99-108. https://doi.org/10.1016/s0379-0738(03)00128-2
  12. Böhme, K., Calo-Mata, P., Barros-Velázquez, J., & Ortea, I. (2019). Review of recent DNA-based methods for main food-authentication topics. Journal of agricultural and food chemistry, 67(14), 3854-3864. https://doi.org/10.1021/acs.jafc.8b07016
  13. Bravi, C.M., Lirón, J.P., Mirol, P.M., Ripoli, M.V., Peral-García, P., & Giovambattista, G. (2004). A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Legal Medicine, 6(4), 246-251. https://doi.org/10.1016/j.legalmed.2004.06.003
  14. Chikuni, K., Tabata, T., Kosugiyama, M., Monma, M., & Saito, M. (1994). Polymerase chain reaction assay for detection of sheep and goat meats. Meat Science, 37(3), 337-345. https://doi.org/10.1016/0309-1740(94)90051-5
  15. Chow, S. (1993). PCR-RFLP analysis on thirteen western Atlantic snappers (subfamily Lutjaninae): a simple method for species and stock identification. Fish Bull, 91,619-627.
  16. Czesny, S., Dabrowski, K., Christensen, J.E., Van Eenennaam, J., & Doroshov, S. (2000). Discrimination of wild and domestic origin of sturgeon ova based on lipids and fatty acid analysis. Aquaculture, 189(1-2), 145-153. https://doi.org/10.1016/S0044-8486(00)00364-1
  17. Dave, A.R., Chaudhary, D.F., Mankad, P.M., Koringa, P.G., & Rank, D.N. (2021). Genetic diversity among two native Indian chicken populations using cytochrome c oxidase subunit I and cytochrome b DNA barcodes. Veterinary World, 14(5), 1389. https://doi.org/10.14202/vetworld.2021.1389-1397
  18. Espinoza, E.O., Lindley, N.C., Gordon, K.M., Ekhoff, J.A. & Kirms, M.A. (1999). Electrospray ionization mass spectrometric analysis of blood for differentiation of species. Analytical Biochemistry, 268(2), 252-261.
  19. https://doi.org/10.1006/abio.1998.3048
  20. Farrell, D.J. (2014). Small-scale duck production: the way ahead. Journal of Animal Husbandry Science and Technology, 30(8), 73-80.
  21. Hartatik, T., Hariyono, D.N.H., &Adinata, Y. (2019). Genetic diversity and phylogenetic analysis of two Indonesian local cattle breeds based on cytochrome b gene sequences. Biodiversitas Journal of Biological Diversity, 20(1), 17-22.
  22. https://doi.org/10.13057/biodiv/d200103
  23. Hebert, P.D., Cywinska, A., Ball, S.L., & DeWaard, J.R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321.
  24. https://doi.org/10.1098/rspb.2002.2218
  25. Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Pääbo, S., Villablanca, F.X., & Wilson, A.C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences, 86(16), 6196-6200.
  26. https://doi.org/10.1073/pnas.86.16.6196
  27. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547-1549.
  28. La Neve, F., Civera, T., Mucci, N., &Bottero, M.T. (2008). Authentication of meat from game and domestic species by SNaPshotminisequencing analysis. Meat Science, 80(2), 216-224.
  29. https://doi.org/10.1016/j.meatsci.2007.11.027
  30. Lee, J.C.I., Tsai, L.C., Huang, M.T., Jhuang, J.A., Yao, C.T., Chin, S.C., Wang, L.C., Linacre, A., https://doi.org/10.1021/jf950822t
  31. Rokas, A., Ladoukakis, E., &Zouros, E. (2003). Animal mitochondrial DNA recombination revisited. Trends in Ecology & Evolution, 18(8), 411417.
  32. https://doi.org/10.1016/S0169-5347(03)00125-3
  33. Russell, V.J., Hold, G.L., Pryde, S.E., Rehbein, H., Quinteiro, J., Rey-Mendez, M., Sotelo, C.G., Pérez-Martin, R.I., Santos, A.T., & Rosa, C. (2000). Use of restriction fragment length polymorphism to distinguish between salmon species. Journal of agricultural and food chemistry, 48(6), 21842188. https://doi.org/10.1021/jf991213e
  34. Taylor, A.J., Linforth, R., Weir, O., Hutton, T., & Green, B. (1993). Potential of electrospray mass spectrometry for meat pigment identification. Meat science, 33(1), 75-83. https://doi.org/10.1016/0309-1740(93)90095-Y
  35. Tripathi, A.M., Tyagi, A., Kumar, A., Singh, A., Singh, S., Chaudhary, L.B., & Roy, S. (2013). The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PloS one, 8(2), e57934.
  36. https://doi.org/10.1371/journal.pone.0057934
  37. Yacoub, H.A., Fathi, M.M., &Sadek, M.A. (2015). Using cytochrome b gene of mtDNA as a DNA barcoding marker in chicken strains. Mitochondrial DNA, 26(2), 217223. https://doi.org/10.3109/19401736.2013.825771