Main Article Content

Abstract

Sustainability, Ecofriendly, and green technology are key principles guiding the biosynthesis of nanoparticles in this research.  This work aimed to utilize Iron oxide nanoparticles (IONPs) as antimicrobial agents, what offers a promising solution to combat antibiotic-resistant pathogens. In this study, 120 food samples were analyzed. Food origin Citrobacter freundii was isolated and identified accurately to be used then for the biosynthesis of Iron oxide nanoparticles. Iron Oxide Nanoparticles were synthesized and characterized using different assays. Atomic force microscope was the principle characterization technique. Their antimicrobial activity was tested against foodborne and clinical bacterial isolates. The results of this study revealed that the biosynthesized IONPs were in a diameter of 32.86 nm with magnetic properties. The biosynthesized IONPs inhibited the biofilm formation of both food and clinical isolates. The main conclusion of this work is that food origin C. freundii is an excellent reducing agent in the biosynthesis of these bioactive nano-scale materials. This research is the first to synthesize Ferric oxide NPs using C. freundii marking a new approach in the field.  Clinical C. freundii required a higher IO-NPs dose more than foodborne isolates. This calls for stronger therapies, while foodborne C. freundii still poses contamination risks despite lower resistance. Addressing both could improve antimicrobial treatments and food safety.

Keywords

Food Nanotechnology Iron Ecofriendly Food safety

Article Details

How to Cite
AlKhafaji, M. H. ., Mohsin, R. H. ., & Kadhim, M. J. . (2024). Biosynthesis of Iron Oxide Nanoparticles Using Food Origin Citrobacter freundii in Optimized Conditions. Basrah Journal of Agricultural Sciences, 37(2), 249–263. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2001

References

  1. Abbas, H. H., & Faliyyah, M. T. (2019). Biosynthesis and optimization of silver nanoparticles from Pseudomonas aeruginosa. Biochemical & Cellular Archives, 19(1).
  2. https://www.connectjournals.com/pages/articledetails/toc029489
  3. Abdul-Karim, E. K., & Hussein, H. Z. (2022). The biosynthesis of nanoparticles by fungi and the role of nanoparticles in resisting of pathogenic fungi to plants: a review. Basrah Journal of Agricultural Sciences, 35(1), 243-256.
  4. https://doi.org/10.37077/25200860.2022.35.1.18
  5. AlKhafaji, M. H. ., Mohsin, R. H. ., & Alshaikh Faqri, A. M. . (2024). Food Additive Mediated Biosynthesis of AgNPs with Antimicrobial Activity Against Hypermucoviscous Enterotoxigenic Foodborne Klebsiella pneumoniae. Basrah Journal of Agricultural Sciences, 37(1), 278–295.
  6. https://doi.org/10.37077/25200860.2024.37.1.21
  7. Al-Khafaji, M. H. (2017). The Inhibition Activity of Silver Nanoparticles Compared with D-Glycin and Imipenem Effect on the Biofilm Formation by Food-origin Salmonella. Iraqi Journal of Science, 836-842.
  8. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6026
  9. Almudhafar, S. M., & Al-Hamdani, M. A. (2022). Antibacterial and Anticancer Effects of Silver Nanoparticles Synthesised using Eragrostis tef and Vitellaria paradoxa Seeds Extract. Basrah Journal of Agricultural Sciences, 35(2), 132-159.
  10. https://www.bjas.bajas.edu.iq/index.php/bjas/article/view/688
  11. Aminharati, F., Ehrampoush, M. H., Dallal, M. M. S., Yaseri, M., Tafti, A. A. D., & Rajabi, Z. (2019). Citrobacter freundii foodborne disease outbreaks related to environmental conditions in Yazd Province, Iran. Iranian journal of public health, 48(6), 1099.
  12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635343/
  13. Ansari, M.T., Sami, F., Majeed, S., Hasnain, M.S. and Badgujar, V.B., 2019. Design and evaluation of topical herbal antifungal stick containing extracts of Rhinacanthus nasutus. Journal of Herbal Medicine, 17, p.100290.
  14. https://www.sciencedirect.com/science/article/abs/pii/S2210803319300375
  15. Arias, L. S., Pessan, J. P., Vieira, A. P. M., Lima, T. M. T. D., Delbem, A. C. B., & Monteiro, D. R. (2018). Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics, 7(2), 46.
  16. https://doi.org/10.3390/antibiotics7020046
  17. Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., ... & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance, 1645-1658. https://doi.org/10.2147/IDR.S173867
  18. Banjara, R. A., Kumar, A., Aneshwari, R., Satnami, M. L., & Sinha, S. K. (2024). A comparative analysis of chemical vs green synthesis of nanoparticles and their various applications. Environmental Nanotechnology, Monitoring & Management, 22: 100988.
  19. https://doi.org/10.1016/j.enmm.2024.100988
  20. Benson, T. (2001) Microbiological Applications Laboratory Manual in General Microbiology. 8th Edition, The McGraw-Hill, New York. https://www.scirp.org/reference/referencespapers?referenceid=1819101
  21. Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical research, 33, 2373-2387. https://doi.org/10.1007/s11095-016-1958-5
  22. Borges, A., Saavedra, M. J., & Simões, M. (2015). Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Current medicinal chemistry, 22(21), 2590–2614. https://doi.org/10.2174/0929867322666150530210522
  23. Chaudhari, D. S., Upadhyay, R. P., Shinde, G. Y., Gawande, M. B., Filip, J., Varma, R. S., & Zboril, R. (2024). A review on sustainable iron oxide nanoparticles: synthesis and application in organic catalysis and environmental remediation. Green Chemistry.26 (13): 7579-7655.
  24. https://doi.org/10.1039/D4GC01870B
  25. Coffey, B. M., & Anderson, G. G. (2014). Biofilm formation in the 96-well microtiter plate. In Pseudomonas Methods and Protocols (pp. 631-641). Humana Press, New York, NY.
  26. https://europepmc.org/article/med/24818938
  27. Feynman, R. (2018). There’s plenty of room at the bottom. In Feynman and computation: 63-76. CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9780429500459-7/plenty-room-bottom-richard-feynman
  28. Freeman, D. J., Falkiner, F. R., & Keane, C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of clinical pathology, 42(8): 872-874.
  29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142068/
  30. Gao, H., Yang, H. & Wang, C. (2017). Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil. Results in physics, 7, pp.3130-3136. https://www.sciencedirect.com/science/article/pii/S2211379717309257
  31. Gong, C., Guo, M., Lou, J., Zhang, L., An, Z., Vakharia, V. N., ... & Liu, X. (2023). Identification and characterization of a highly virulent Citrobacter freundii isolate and its activation on immune responses in largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology, 143, 109224.
  32. https://doi.org/10.1016/j.fsi.2023.109224
  33. Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., & Lisitsyn, A. B. (2021). Do iron oxide nanoparticles have significant antibacterial properties?. Antibiotics, 10(7), 884.
  34. https://doi.org/10.3390/antibiotics10070884
  35. Gupta, D., Boora, A., Thakur, A., & Gupta, T. K. (2023). Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environmental Research, 231, 116316.
  36. https://doi.org/10.1016/j.envres.2023.116316
  37. Gupta, S., Kaur, R., Bhardwaj, A., & Parashar, D. (2024). Multifunctional Nanomaterials: Recent Advancements in Cancer Therapeutics and Vaccines. Indian Journal of Microbiology, 1-18. https://doi.org/10.1007/s12088-024-01274-x
  38. Gurunathan, S., Han, J. W., Kwon, D. N., & Kim, J. H. (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale research letters, 9, 1-17.
  39. https://pubmed.ncbi.nlm.nih.gov/25136281/
  40. Hamdy, N. M., Boseila, A. A., Ramadan, A., & Basalious, E. B. (2022). Iron oxide nanoparticles-plant insignia synthesis with favorable biomedical activities and less toxicity, in the “era of the-green”: a systematic review. Pharmaceutics, 14(4), 844.
  41. https://doi.org/10.3390/pharmaceutics14040844
  42. Hashim, M. H., & AlKhafaji, M. H. (2018). Isolation and identification of Citrobacter freundii from chicken meat samples using cultural and molecular techniques. Iraqi Journal of Science, 1216-1224.
  43. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/462
  44. Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., & Iqbal, M. (2011). Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian journal of infectious diseases, 15, 305-311. https://pubmed.ncbi.nlm.nih.gov/21860999/
  45. Jain, A. S., Pawar, P. S., Sarkar, A., Junnuthula, V., & Dyawanapelly, S. (2021). Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. International Journal of Molecular Sciences, 22(21), 11993. https://doi.org/10.3390/ijms222111993
  46. Junior, G. B., Dos Santos, A. C., de Freitas Souza, C., Baldissera, M. D., dos Santos Moreira, K. L., da Veiga, M. L., ... & Baldisserotto, B. (2018). Citrobacter freundii infection in silver catfish (Rhamdia quelen): hematological and histological alterations. Microbial pathogenesis, 125, 276-280.
  47. https://doi.org/10.1016/j.micpath.2018.09.038
  48. Karnwal, A., & Malik, T. (2024). Exploring the untapped potential of naturally occurring antimicrobial compounds: novel advancements in food preservation for enhanced safety and sustainability. Frontiers in Sustainable Food Systems, 8, 1307210. https://doi.org/10.3389/fsufs.2024.1307210
  49. Kumar, M., Gupta, G., Varghese, T., Shankregowda, A. M., Srivastava, P. P., Bhushan, S., ... & Gupta, S. (2022). Synthesis and characterization of super-paramagnetic iron oxide nanoparticles (SPIONs) for minimizing Aeromonas hydrophila load from freshwater. Current Nanoscience, 18(2), 224-236. https://doi.org/10.2174/1573413717666210531153107
  50. Liu, J., Pan, Y., Jin, S., Zheng, Y., Xu, J., Fan, H., ... & Hu, M. (2024). Effects of Citrobacter freundii on sturgeon: Insights from skin mucosal immunology and microbiota. Fish & Shellfish Immunology, 109527.
  51. https://doi.org/10.1016/j.fsi.2024.109527
  52. Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19(3), 311-317. https://doi.org/10.1016/j.jscs.2012.04.007
  53. Manshian, B. B., Jiménez, J., Himmelreich, U., & Soenen, S. J. (2017). Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials, 127, 1-12. https://doi.org/10.1016/j.biomaterials.2017.02.039
  54. Mohanta YK, Biswas K, Jena SK, Hashem A, Abd_Allah EF and Mohanta TK (2020) Anti-biofilm and Antibacterial Activities of Silver Nanoparticles Synthesized by the Reducing Activity of Phytoconstituents Present in the Indian Medicinal Plants. Frontiers in Microbiology 11:1143. https://doi.org/10.3389/fmicb.2020.01143
  55. Mussin, J., Robles-Botero, V., Casañas-Pimentel, R., Rojas, F., Angiolella, L., San Martin-Martinez, E., & Giusiano, G. (2021). Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Scientific reports, 11(1), 14566. https://doi.org/10.1038/s41598-021-94012-y
  56. Nahari, M.H., Al Ali, A., Asiri, A., Mahnashi, M.H., Shaikh, I.A., Shettar, A.K. and Hoskeri, J., 2022. Green synthesis and characterization of iron nanoparticles synthesized from aqueous leaf extract of vitex leucoxylon and its biomedical applications. Nanomaterials, 12(14), p.2404.
  57. https://doi.org/10.3390/nano12142404
  58. Nawaz, M., Khan, A. A., Khan, S., Sung, K., & Steele, R. (2008). Isolation and characterization of tetracycline-resistant Citrobacter spp. from catfish. Food microbiology, 25(1), 85-91.
  59. https://doi.org/10.1016/j.fm.2007.07.008
  60. Ramos-Vivas, J., Chapartegui-González, I., Fernández-Martínez, M., González-Rico, C., Barrett, J., Fortún, J., ... & Fariñas, M. C. (2020). Adherence to human colon cells by multidrug resistant Enterobacterales strains isolated from solid organ transplant recipients with a focus on Citrobacter freundii. Frontiers in cellular and infection microbiology, 10, 447.
  61. https://doi.org/10.3389%2Ffcimb.2020.00447
  62. Ramsden, J. J. (2018). Global Nanotechnology. Applied Nanotechnology; Elsevier: Amsterdam, The Netherlands, 245-254.
  63. https://doi.org/10.1016/B978-0-12-813343-9.00020-2
  64. Rodríguez-Félix, F., Graciano-Verdugo, A. Z., Moreno-Vásquez, M. J., Lagarda-Díaz, I., Barreras-Urbina, C. G., Armenta-Villegas, L., Olguín-Moreno, A. & Tapia-Hernández, J. A. (2022). Trends in sustainable green synthesis of silver nanoparticles using agri-food waste extracts and their applications in health. Journal of Nanomaterials, 2022 (1): 1-37.
  65. https://doi.org/10.1155/2022/8874003
  66. Saleh, G. M. (2020). Green synthesis concept of nanoparticles from environmental bacteria and their effects on pathogenic bacteria. Iraqi Journal of Science, 1289-1297.
  67. https://doi.org/10.24996/ijs.2020.61.6.6
  68. Salfinger, Y., & Tortorello, M. L. (Eds.). (2015). Compendium of methods for the microbiological examination of foods. American Public Health Association.
  69. https://ajph.aphapublications.org/doi/abs/10.2105/MBEF.0222#:~:text=10.2105/MBEF.0222.010
  70. Socoliuc V, Peddis D, Petrenko VI, Avdeev MV, Susan-Resiga D, Szabó T, Turcu R, Tombácz E, & Vékás L. (2020). Magnetic Nanoparticle Systems for Nanomedicine—A Materials Science Perspective. Magnetochemistry.; 6(1):2. https://doi.org/10.3390/magnetochemistry6010002
  71. Tacconelli, E., & Pezzani, M. D. (2019). Public health burden of antimicrobial resistance in Europe. The Lancet Infectious Diseases, 19(1), 4-6. https://doi.org/10.1016/S1473-3099(18)30648-0
  72. Tang, K. W. K., Millar, B. C., & Moore, J. E. (2023). Antimicrobial resistance (AMR). British Journal of Biomedical Science, 80, 11387. https://doi.org/10.3389/bjbs.2023.11387
  73. Taniguchi, N. (1974). On the basic concept of'nano-technology'. In Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, 1974. Japan Society of Precision Engineering. https://cir.nii.ac.jp/crid/1572261550373135488
  74. Tawfeeq, S. M. T., Maaroof, M. N., & Al-Ogaidi, I. (2017). Synergistic effect of biosynthesized silver nanoparticles with antibiotics against multi-drug resistance bacteria isolated from children with diarrhoea under five years. Iraqi Journal of Science, 14-52. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6189
  75. Thanigaivel, S., Vijayakumar, S., Gopinath, S., Mukherjee, A., Chandrasekaran, N., & Thomas, J. (2015). In vivo and in vitro antimicrobial activity of Azadirachta indica (Lin) against Citrobacter freundii isolated from naturally infected Tilapia (Oreochromis mossambicus). Aquaculture, 437, 252-255. https://doi.org/10.1016/j.aquaculture.2014.12.008