Main Article Content

Abstract

The current review aimed to identify the recent developments in sustainable steam generation and its applications in food sterilization. Fuel, gas, and coal boilers are the traditional methods for producing steam. Recently, innovative methods of steam generation include electrodes, solar, natural gas, nano-electric, biogas, biomethane boilers, and sustainable steam generation through heat pump (heat pump is an energy-efficient device that transfers heat from one location to another, typically using electricity). The calories in the 100% saturated steam are higher than steam saturation by 95%. The solar parabolic dish system includes biaxial tracking mechanism that ensures increased efficiency and useful energy production due to the increased radiation. Electrode boilers generate steam using electric current, offering simplicity, reliability, and efficiency. Nano-electric boiler boasts a high-power density, minimal carbon emissions, great physical stability, and high-power factor and electric conversion efficiency. The efficiency of natural gas, biogas and biomethane boilers ranges from 94% to 95% with an economizer. The air-source heat pump boiler provides stable system output with high energy efficiency, generating steam at temperatures exceeding 120°C. Water content below 0.01% mass is necessary for steam purity to prevent overheating. The thermal treatment of canned food should reduce bacteria levels by 12 log cycles in low-acid foods to meet safety limits. The container contains 1 spores for Clostridium botulinum for thermal treatment (sterilization) at 121°C. The process involves sterilizing materials at 121°C for 15 min, killing most heat-resistant microorganisms. The innovative steam sterilization methods aim to advance industrial uses that fulfill net-zero emissions and sustainable development goals (SDG).

Keywords

Boiler Biogas Biomethane Electrodes Solar concentrator Superheated steam

Article Details

How to Cite
Al-Mtury, A. A. A., Al-Shatty, S. M. ., Al-Hilphy, A. R. ., & Manzoor, M. F. . (2024). Sustainable Innovations in Steam Generation for Food Sterilization Processes: A Review. Basrah Journal of Agricultural Sciences, 37(2), 326–353. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2009

References

  1. Abdulstar, A. R., Altemimi, A., Al-HiIphy, A. R. S., Watson, D. G., & Lakhssassi, N. (2020). Water distillation using an ohmic heating apparatus. International Journal of Ambient Energy, 43(1), 2748–2758. https://doi.org/10.1080/01430750.2020.1773924
  2. Albahr, Z., Al-Ghamdi, S., Tang, J., & Sablani, S. S. (2022). Pressure-assisted thermal sterilization and storage stability of avocado puree in high barrier polymeric packaging. Food and Bioprocess Technology, 15(11), 2616–2628. https://doi.org/10.1007/s11947-022-02904-2
  3. Al-Ghamdi, S., Sonar, C. R., Patel, J., Albahr, Z., & Sablani, S. S. (2020). High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: Microbial safety, nutrient, quality, and packaging evaluation. Food Control, 114, 107233. https://doi.org/10.1016/j.foodcont.2020.107233
  4. Al-Hilphy, A. R., & Khaneghah, A. M. (2023). Ohmic heating design, thermal performance, and applications in food processing. In Smart Food Industry: The Blockchain for Sustainable Engineering (pp. 274–289). CRC Press. https://doi.org/10.1201/9781003231059-19
  5. Al-Hilphy, A. R., Altemimi, A. B., Alkanan, Z. T., Eweys, A. S., Haoujar, I., Cacciola, F., & Abedelmaksoud, T. G. (2023). Vacuum ohmic heating: a promising technology for the improvement of tomato paste processing, safety, quality and storage stability. Basrah Journal of Agricultural Sciences, 36(1), 214-237.‏ https://doi.org/10.37077/25200860.2023.36.1.18
  6. Al-Hilphy A. R., Ahmed, A. K., Gavahian, M., Chen, H., Chemat, F., Al‐Behadli, T. M., Mohd Nor, M. Z., & Ahmad, S. (2022). Solar energy‐based extraction of essential oils from cloves, cinnamon, orange, lemon, eucalyptus, and cardamom: A clean energy technology for green extraction. Journal of Food Process Engineering, 45(6) e14038 . https://doi.org/10.1111/jfpe.14038
  7. Anwar, S. H., Hifdha, R. W., Hasan, H., Rohaya, S., & Martunis. (2020). Optimizing the sterilization process of canned yellowfin tuna through time and temperature combination. IOP Conference Series: Earth and Environmental Science, 425(1), 012031. https://doi.org/10.1088/1755-1315/425/1/012031
  8. Arampath, P. C., & Dekker, M. (2020). Thermal effect, diffusion, and leaching of health-promoting phytochemicals in commercial canning process of Mango (Mangifera indica L.) and Pineapple (Ananas comosus L.). Foods, 10(1), 46. https://doi.org/10.3390/foods10010046
  9. Baetens, J., De Kooning, J. D. M., Eetvelde, G. Van, & Vandevelde, L. (2019). Imbalance price prediction for the implicit demand response potential evaluation of an electrode boiler. 4th Annual Conference of the Portuguese Association of Energy Economics (APEEN) - Energy Demand-Side Management and Electricity Markets, Covilhã, Portugal, 17–18 October 2019. 6pp. : http://hdl.handle.net/1854/LU-8628448
  10. Bai, G., Cheng, L., Peng, L., Wu, B., Zhen, Y., Qin, G., Zhang, X., Aschalew, N. D., Sun, Z., & Wang, T. (2023). Effects of ultra-high-temperature processes on metabolite changes in milk. Food Science & Nutrition, 11(6), 3601–3615. https://doi.org/10.1002/fsn3.3350
  11. Biglia, A., Comba, L., Fabrizio, E., Gay, P., & Ricauda Aimonino, D. (2017). Steam batch thermal processes in unsteady state conditions: Modelling and application to a case study in the food industry. Applied Thermal Engineering, 118. https://doi.org/10.1016/j.applthermaleng.2017.03.004
  12. Björnsson, L., Pettersson, M., Börjesson, P., Ottosson, P., & Gustavsson, C. (2021). Integrating bio-oil production from wood fuels to an existing heat and power plant - evaluation of energy and greenhouse gas performance in a Swedish case study. Sustainable Energy Technologies and Assessments, 48, 101648. https://doi.org/10.1016/j.seta.2021.101648
  13. Camaraza-Medina, Y., Retirado-Mediaceja, Y., Hernandez-Guerrero, A., & Luviano-Ortiz, J. L. (2021). Energy efficiency indicators of the steam boiler in a power plant of Cuba. Thermal Science and Engineering Progress, 23, 100880.‏ https://doi.org/10.1016/j.tsep.2021.100880
  14. Chao, L., Ke, L., Yongzhen, W., Zhitong, M., & Yulie, G. (2017). The effect analysis of thermal efficiency and optimal design for boiler system. Energy Procedia, 105,3045-3050. https://doi.org/10.1016/j.egypro.2017.03.629
  15. Cowan, D. A. (2004). The upper temperature for life – where do we draw the line? Trends in Microbiology, 12(2), 58–60. https://doi.org/10.1016/j.tim.2003.12.002
  16. Dash, K. K., Fayaz, U., Dar, A. H., Shams, R., Manzoor, S., Sundarsingh, A., ... & Khan, S. A. (2022). A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chemistry Advances, 1, 100041.‏ https://doi.org/10.1016/j.focha.2022.100041
  17. D’cruz, V., Chandran, M., Athmaselvi, K., Rawson, A., & Natarajan, V. (2023). Ohmic heating using electrolytes for paddy parboiling: A study on thermal profile, electrical conductivity, milling quality, and nutritional attributes. Journal of Food Process Engineering, 46(3). e14276 https://doi.org/10.1111/jfpe.14276
  18. Deák, T. (2014). Food technologies: Sterilization. In Encyclopedia of Food Safety (pp. 245–252). Elsevier. https://doi.org/10.1016/B978-0-12-378612-8.00258-4
  19. Deeth, H. (2017). Optimum thermal processing for extended shelf-life (ESL) milk. Foods, 6(11), 102. https://doi.org/10.3390/foods6110102
  20. Deeth, H. C., & Lewis, M. J. (2017). High temperature processing of milk and milk products. Wiley Blackwell, 592pp. https://vetbooks.ir/high-temperature-processing-of-milk-and-milk-products/
  21. Dorotić, H., Pukšec, T., & Duić, N. (2020). Analysis of displacing natural gas boiler units in district heating systems by using multi-objective optimization and different taxing approaches. Energy Conversion and Management, 205, 112411. https://doi.org/10.1016/j.enconman.2019.112411
  22. Fang, J., Liu, C., Law, C.-L., Mujumdar, A. S., Xiao, H.-W., & Zhang, C. (2023). Superheated steam processing: An emerging technology to improve food quality and safety. Critical Reviews in Food Science and Nutrition, 63(27), 8720–8736. https://doi.org/10.1080/10408398.2022.2059440
  23. Fasogbon, B. M., Adebo, O. A., Adeniran, H. A., & Taiwo, K. A. (2022). Thermal processing of canned dika kernel ( ogbono ) soup and the neural prediction of its canning parameters. Journal of Food Process Engineering, 45(9). https://doi.org/10.1111/jfpe.14122
  24. Franco, J., Saravia, L., Javi, V., Caso, R., & Fernandez, C. (2008). Pasteurization of goat milk using a low cost solar concentrator. Solar Energy, 82(11), 1088–1094. https://doi.org/10.1016/j.solener.2007.10.011
  25. Gavahian, M., Sastry, S., Farhoosh, R., & Farahnaky, A. (2020). Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. InToldrá,f.( Ed). Advances in Food and Nutrition Research, Vol. 91 Chapter Six, (pp. 227–273). Academic Press . https://doi.org/10.1016/bs.afnr.2019.09.001
  26. Giladi, D. (2019). Boiler (Patent Patent No. 10,345,005). Washington, DC: U.S. 5pp. https://patents.justia.com/patent/10345005
  27. Hamidinasab, B., Javadikia, H., Hosseini-Fashami, F., Kouchaki-Penchah, H., & Nabavi-Pelesaraei, A. (2023). Illuminating sustainability: A comprehensive review of the environmental life cycle and exergetic impacts of solar systems on the agri-food sector. Solar Energy, 262, 111830. https://doi.org/10.1016/j.solener.2023.111830
  28. Hannun, R. M., & Razzaq, A. H. A. (2022, March). Air pollution resulted from coal, oil and gas firing in thermal power plants and treatment: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 1002, No. 1, p. 012008). IOP Publishing.‏ https://doi.org/10.1088/1755-1315/1002/1/012008
  29. Hasan, H., Anwar, S. H., Rohaya, S., & Martunis. (2018). Thermal penetration study for the purpose of formulating sterilization procedures of yellowfin tuna canning. IOP Conference Series: Earth and Environmental Science, 207, 012052. https://doi.org/10.1088/1755-1315/207/1/012052
  30. Hashemi, S. M. B., & Roohi, R. (2019). Ohmic heating of blended citrus juice: Numerical modeling of process and bacterial inactivation kinetics. Innovative Food Science & Emerging Technologies, 52, 313–324. https://doi.org/10.1016/j.ifset.2019.01.012
  31. Hechelmann, R. H., Seevers, J. P., Otte, A., Sponer, J., & Stark, M. (2020). Renewable energy integration for steam supply of industrial processes—A food processing case study. Energies, 13(10), 2532. https://doi.org/10.3390/en13102532
  32. Huang, J., Zhang, M., Adhikari, B., & Yang, Z. (2016). Effect of microwave air spouted drying arranged in two and three-stages on the drying uniformity and quality of dehydrated carrot cubes. Journal of Food Engineering, 177, 80–89. https://doi.org/10.1016/j.jfoodeng.2015.12.023
  33. Huang, J., Guo, Q., Manzoor, M. F., Chen, Z., & Xu, B. (2021). Evaluating the sterilization effect of wheat flour treated with continuous high-speed-stirring superheated steam. Journal of Cereal Science, 99, 103199. https://doi.org/10.1016/j.jcs.2021.103199
  34. Ismail, M. I., Yunus, N. A., & Hashim, H. (2021). Integration of solar heating systems for low-temperature heat demand in food processing industry – A review. Renewable and Sustainable Energy Reviews, 147, 111192. https://doi.org/10.1016/j.rser.2021.111192
  35. Jia, W. T., Yang, Z., Guo, X. N., & Zhu, K. X. (2021). Effect of superheated steam treatment on the lipid stability of dried whole wheat noodles during storage. Foods, 10(6), 1348. https://doi.org/10.3390/foods10061348
  36. Jiang, J., Hu, B., Wang, R. Z., Deng, N., Cao, F., & Wang, C. C. (2022). A review and perspective on industry high-temperature heat pumps. Renewable and sustainable energy reviews, 161, 112106.‏ https://doi.org/10.1016/j.rser.2022.112106
  37. Jung, H., Lee, Y. J., & Yoon, W. B. (2022). Effect of pouch size on sterilization of ready-to-eat (RTE) bracken ferns: Numerical simulation and texture evaluation. Processes, 11(1), 35. https://doi.org/10.3390/pr11010035
  38. Kameda, T., Ohkuma, K., Sano, N., Batbayar, N., Terashima, Y., & Terada, K. (2014). Development of a compact induction-heated autoclave with a dramatically shortened sterilization cycle in orthodontic clinics. Orthodontic Waves, 73(2), 55–60. https://doi.org/10.1016/j.odw.2014.03.001
  39. Khunprama, A., Rittiboon, A., & Jatupornpipat, M. (2022). Effects of sterilization on the physicochemical properties of ready-to-eat fried rice with traditional golek sauce in retort bowl. Journal of Food and Nutrition Research, 10(3), 200–208. https://doi.org/10.12691/jfnr-10-3-4
  40. Kim, N. E., & Kim, Y. T. (2021). Electrode boiler system (Patent Patent Application No. 17/048,273). 34pp.
  41. Krishna, T. C., Najda, A., Bains, A., Tosif, M. M., Papliński, R., Kapłan, M., & Chawla, P. (2021). Influence of ultra-heat treatment on properties of milk proteins. Polymers, 13(18), 3164. https://doi.org/10.3390/polym13183164
  42. Kumar, K., Kumar, S., & Gill, H. S. (2023). Role of surface modification techniques to prevent failure of components subjected to the fireside of boilers. Journal of Failure Analysis and Prevention, 23(1), 1-15.‏ https://doi.org/10.1007/s11668-022-01556-w
  43. Kumar, K. H., Daabo, A. M., Karmakar, M. K., & Hirani, H. (2022). Solar parabolic dish collector for concentrated solar thermal systems: A review and recommendations. Environmental Science and Pollution Research, 29(22), 32335–32367. https://doi.org/10.1007/s11356-022-18586-4
  44. Kurniadi, M., Bintang, R., Kusumaningrum, A., Nursiwi, A., Nurhikmat, A., Susanto, A., Angwar, M., Triwiyono, & Frediansyah, A. (2017). Shelf life prediction of canned fried-rice using accelerated shelf life testing (ASLT) arrhenius method. IOP Conference Series: Earth and Environmental Science, 101, 012029. https://doi.org/10.1088/1755-1315/101/1/012029
  45. Lawson, V. A., Stewart, J. D., & Masters, C. L. (2007). Enzymatic detergent treatment protocol that reduces protease-resistant prion protein load and infectivity from surgical-steel monofilaments contaminated with a human-derived prion strain. Journal of General Virology, 88(10), 2905–2914. https://doi.org/10.1099/vir.0.82961-0
  46. Lerouge, S. (2019). Sterilization and cleaning of metallic biomaterials. In Niinomi, M.(Ed.).Metals for Biomedical Devices (pp: 405–428). Series: Woodhead Publishing series in biomaterials.Publisher: Woodhead Publishin Elsevier. https://doi.org/10.1016/B978-0-08-102666-3.00016-X
  47. Lewis, M. (2023). Thermal processing: Pasteurisation and sterilisation. In Food Process Engineering Principles and Data (pp. 197–205). Elsevier. https://doi.org/10.1016/B978-0-12-821182-3.00022-4
  48. Li, J., Fu, Y., Li, C., Li, J., Xing, Z., & Ma, T. (2021). Improving wind power integration by regenerative electric boiler and battery energy storage device. International Journal of Electrical Power & Energy Systems, 131, 107039. https://doi.org/10.1016/j.ijepes.2021.107039
  49. Li, J., Du, M., Lv, G., Zhou, L., Li, X., Bertoluzzi, L., Liu, C., Zhu, S., & Zhu, J. (2018). Interfacial solar steam generation enables fast‐responsive, energy‐efficient, and low‐cost off‐grid sterilization. Advanced Materials, 30(49). https://doi.org/10.1002/adma.201805159
  50. Lorfing, D., Olives, R., Falcoz, Q., Guillot, E., Le Men, C., & Ahmadi, A. (2021). Design and performance of a new type of boiler using concentrated solar flux. Energy Conversion and Management, 249, 114835.‏ https://doi.org/10.1016/j.enconman.2021.114835
  51. Madejski, P., & Żymełka, P. (2020). Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling. Energy, 197, 117221.‏ https://doi.org/10.1016/j.energy.2020.117221
  52. Maikanov, B., Mustafina, R., Auteleyeva, L., Wiśniewski, J., Anusz, K., Grenda, T., Kwiatek, K., Goldsztejn, M., & Grabczak, M. (2019). Clostridium botulinum and Clostridium perfringens occurrence in kazakh honey samples. Toxins, 11(8), 472. https://doi.org/10.3390/toxins11080472
  53. Malik, M. Z., Shaikh, P. H., Zhang, S., Lashari, A. A., Leghari, Z. H., Baloch, M. H., Memon, Z. A., & Caiming, C. (2022). A review on design parameters and specifications of parabolic solar dish Stirling systems and their applications. Energy Reports, 8, 4128–4154. https://doi.org/10.1016/j.egyr.2022.03.031
  54. Mallick, A. R. (2023). Practical Boiler Operation Engineering and Power Plant. Fifth Edition. PHI Learning Pvt. Ltd. 648pp. https://books.google.iq/books?id=BWWbEAAAQBAJ&printsec=frontcover&hl=ar&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
  55. Manni, M., Nicolini, A., & Cotana, F. (2022). Performance assessment of an electrode boiler for power-to-heat conversion in sustainable energy districts. Energy and Buildings, 277, 112569.‏ https://doi.org/10.1016/j.enbuild.2022.112569
  56. Mohammed, F. Z., Hussein, A. M., Danook, S. H., & Mohamad, B. (2023). Characterization of a flat plate solar water heating system using different nano-fluids. In AIP Conference Proceedings (Vol. 2901, No. 1). AIP Publishing.‏ https://doi.org/10.1063/5.0178901
  57. Mohapatra, S. (2017). Sterilization and Disinfection. In Prabhakar,H.( Ed.) Essentials of Neuroanesthesia (pp. 929–944). Academic Press.. https://doi.org/10.1016/B978-0-12-805299-0.00059-2
  58. Moreno, J., Espinoza, C., Simpson, R., Petzold, G., Nuñez, H., & Gianelli, M. P. (2016). Application of ohmic heating/vacuum impregnation treatments and air drying to develop an apple snack enriched in folic acid. Innovative Food Science & Emerging Technologies, 33, 381–386. https://doi.org/10.1016/j.ifset.2015.12.014
  59. Morya, S., Amoah, A. E. D. D., & Snaebjornsson, S. O. (2020). Food poisoning hazards and their consequences over food safety. In Chowdhary,P., Raj,A., Verma,D., Akhter,Y.(eds.), Microorganisms for Sustainable Environment and Health (pp. 383–400). Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00019-X
  60. Munda, P., Husain, Md. M., Rajinikanth, V., & Metya, A. K. (2018). Evolution of microstructure during short-term overheating failure of a boiler water wall tube made of carbon steel. Journal of Failure Analysis and Prevention, 18(1), 199–211. https://doi.org/10.1007/s11668-018-0394-8
  61. Musavian, H. S., Butt, T. M., Ormond, A., Keeble, D., & Krebs, N. H. (2022). Evaluation of steam-ultrasound decontamination on naturally contaminated broilers through the analysis of campylobacter, total viable count, and enterobacteriaceae. Journal of Food Protection, 85(2), 196–202. https://doi.org/10.4315/JFP-21-223
  62. Nafissatou, D. N., Adjaratou, B. D., & Thomas, L. T. (2020). Effect of different processing conditions on the quality of canned sweet corn kernels produced and processed in Senegal. African Journal of Food Science, 14(4), 102–111. https://doi.org/10.5897/AJFS2020.1930
  63. Nemati, F., Golmakani, M. T., Niakousari, M., & Ghiasi, F. (2021). Optimization of solvent free ohmic-assisted heating as a promising esterification tool for ethyl butyrate synthesis. LWT, 141, 110890. https://doi.org/10.1016/j.lwt.2021.110890
  64. Niinomi, M. (2019). Metals for biomedical devices. In Metals for Biomedical Devices. 2nd Edition. Woodhead Publishing. https://doi.org/10.1016/C2017-0-03429-8
  65. Norman-McKay,L., Leboffe,M. J., & Pierce,B.F.(2022). Microbiology: Laboratory Theory and Application, Essentials (2nd Ed). Publisher: Morton.1030pp. https://books.google.iq/books?hl=ar&lr=&id=8ZOFDwAAQBAJ&oi=fnd&pg=PP1&dq=Microbiology:+Laboratory+Theory+and+Application,+Essentials+(2nd+Ed)&ots=n4RWcS0unM&sig=GohdZKutObKZCdkOFNvte0UtC9E&redir_esc=y#v=onepage&q=Microbiology%3A%20Laboratory%20Theory%20and%20Application%2C%20Essentials%20(2nd%20Ed)&f=false
  66. Noureen, L., Zaman, S., Ali Shah, W., Wang, Q., Humayun, M., Xu, Q., & Wang, X. (2023). Bifunctional photothermal membrane for high-temperature interfacial solar steam generation and off-grid sterilization. Chemical Engineering Journal, 473, 145122. https://doi.org/10.1016/j.cej.2023.145122
  67. Nurhikmat, A., Susanto, A., Kusumaningrum, A., Amri, A. F., Suratno, Amdani, R. Z., & Prayogi, S. (2021). General assessment on the sensory properties of traditional cuisine from java island after canning process. IOP Conference Series: Earth and Environmental Science, 759(1), 012003. https://doi.org/10.1088/1755-1315/759/1/012003
  68. Nuryawan, A., Syahputra, R. S., Azhar, I., & Risnasari, I. (2021). Basic properties of the mangrove tree branches as a raw material of wood pellets and briquettes. IOP Conference Series: Earth and Environmental Science, 891(1), 012005. https://doi.org/10.1088/1755-1315/891/1/012005
  69. Ouyang, T., Pan, M., Huang, Y., Tan, X., & Qin, P. (2023). Thermodynamic design and power prediction of a solar power tower integrated system using neural networks. Energy, 278, 127849. https://doi.org/10.1016/j.energy.2023.127849
  70. Owusu-Apenten, R. K., & Vieira, E. R. (2023). Elementary Food Science . Fifth Edition, No. 303022. Springer cham. 602pp. https://doi.org/10.1007/978-3-030-65433-7
  71. Pal, R. K., & Ravi Kumar, K. (2023). Coupled thermo-structural analysis of absorber tube for direct steam generation in parabolic trough solar collector. Solar Energy, 266, 112148. https://doi.org/10.1016/j.solener.2023.112148
  72. Parija, S. C. (2023). Sterilization and disinfection. In Textbook of Microbiology and Immunology. (pp. 27–44). Singapore: Springer, Singapore. ‏ https://doi.org/10.1007/978-981-19-3315-8_4
  73. Park, H. Y., Han, K., Kim, H. H., Park, S., Jang, J., Yu, G. S., & Ko, J. H. (2020). Comparisons of combustion characteristics between bioliquid and heavy fuel oil combustion in a 0.7 MWth pilot furnace and a 75 MWe utility boiler. Energy, 192, 116557. https://doi.org/10.1016/j.energy.2019.116557
  74. Peesel, R. H., Philipp, M., Schumm, G. M., Hesselbach, J., & Walmsley, T. G. (2016). Energy efficiency measures for batch retort sterilisation in the food processing industry.‏ Chemical Engineering Transactions, 52: 163–168. https://www.cetjournal.it/index.php/cet/article/view/CET1652028
  75. Petlickaitė, R., Jasinskas, A., Mieldažys, R., Romaneckas, K., Praspaliauskas, M., & Balandaitė, J. (2022). Investigation of pressed solid biofuel produced from multi-crop biomass. Sustainability, 14(2), 799. https://doi.org/10.3390/su14020799
  76. Pommerville, J. C. (2022). Fundamentals of Microbiology. 12th edition. Jones & Bartlett Publishers. 950pp.
  77. Prabawa, I. D. G. P., Purnomo, E. H., & Faridah, D. N. (2022). Canning of mandai , a traditional fermented food from Indonesia, using thermal pasteurization. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.17137
  78. Praharasti, A. S., Kusumaningrum, A., Nurhikmat, A., Susanto, A., Suprapedi, -, Maulani, M. D., & Wiratama, W. (2020). Estimation of sterilization value using general method and ball formula for beef rendang in retort pouch. International Journal on Advanced Science, Engineering and Information Technology, 10(5), 2118. https://doi.org/10.18517/ijaseit.10.5.8149
  79. Pursito, D. J., Purnomo, E. H., Fardiaz, D., & Hariyadi, P. (2020). Optimizing steam consumption of mushroom canning process by selecting higher temperatures and shorter time of retorting. International Journal of Food Science, 2020, 1–8. https://doi.org/10.1155/2020/6097343
  80. Ranjbar, A. (2019). Numerical calculation f-value and lethality of non-newtonian food fluid during sterilization based on can geometry. Iranian Food Science and Technology Research Journal, 14(6), 113–125. https://doi.org/10.22067/ifstrj.v0i0.71219
  81. Rao, D. G. (2023). Fundamentals of Food Engineering. PHI Learning Pvt. Ltd. 640pp. https://books.google.iq/books?hl=ar&lr=&id=TozTEAAAQBAJ&oi=fnd&pg=PP1&dq=Fundamentals+of+food+engineering+operations&ots=ODNHHHiiR0&sig=4ooqS4mfPuS8fTemeVZQ7iF6CME&redir_esc=y#v=onepage&q=Fundamentals%20of%20food%20engineering%20operations&f=false
  82. Rodríguez-Ramos, F., Tabilo, E. J., & Moraga, N. O. (2021). Modeling inactivation of Clostridium botulinum and vitamin destruction of non-Newtonian liquid-solid food mixtures by convective sterilization in cans. Innovative Food Science & Emerging Technologies, 73, 102762. https://doi.org/10.1016/j.ifset.2021.102762
  83. Rohaman, M. M., & Siregar, N. C. (2020). Food safety assurance through thermal process on canned corned beef. IOP Conference Series: Materials Science and Engineering, 885(1), 012064. https://doi.org/10.1088/1757-899X/885/1/012064
  84. Rutala, W. A., & Weber, D. J. (2016). Disinfection, sterilization, and antisepsis: An overview. American Journal of Infection Control, 44(5), e1–e6. https://doi.org/10.1016/j.ajic.2015.10.038
  85. Rutala, W. A., & Weber, D. J. (2023). Risk of disease transmission to patients from “contaminated” surgical instruments and immediate use steam sterilization. American Journal of Infection Control, 51(11), A72–A81. https://doi.org/10.1016/j.ajic.2023.01.019
  86. Saha, D., Patra, A., Prasath, V. A., & Pandiselvam, R. (2022). Anti-nutritional attributes of faba-bean. In Faba bean: Chemistry, properties and functionality (pp. 97-122). Cham: Springer International Publishing.‏ https://doi.org/10.1007/978-3-031-14587-2_5
  87. Sanaye, S., Khakpaay, N., & Chitsaz, A. (2020). Thermo-economic and environmental multi-objective optimization of a novel arranged biomass-fueled gas engine and backpressure steam turbine combined system for pulp and paper mills. Sustainable Energy Technologies and Assessments, 40, 100778.‏ https://doi.org/10.1016/j.seta.2020.100778
  88. Sanchez Vega, L. R. (2016). Modeling and experimental evaluation of a small-scale fresnel solar concentrator system. Renewables: Wind, Water, and Solar, 3(1), 2. https://doi.org/10.1186/s40807-016-0021-9
  89. Sarah, M., Ramadhan, M. R., Zahra, A., Madinah, I., Maulina, S., & Misran, E. (2023). Sterilization of oil palm fruit utilizing continuous microwave sterilizer. Case Studies in Thermal Engineering, 52, 103698. https://doi.org/10.1016/j.csite.2023.103698
  90. Sarifudin, A., Desnilasari, D., Kristanti, D., Setiaboma, W., Putri, D. P., Surahman, D. N., Putri, S. K. D. F. A., Santosa, T., Gandara, D., & Mochamad, M. (2022). Effect of different sterilization time on the quality properties and sensory acceptance of fishball of mackerel fish (Rastrelliger kanagurta) packaged in retort pouch. IOP Conference Series: Earth and Environmental Science, 995(1), 012019. https://doi.org/10.1088/1755-1315/995/1/012019
  91. Sathish, T., Mohanavel, V., Afzal, A., Arunkumar, M., Ravichandran, M., Khan, S. A., Rajendran, P., & Asif, M. (2021). Advancement of steam generation process in water tube boiler using taguchi design of experiments. Case Studies in Thermal Engineering, 27, 101247. https://doi.org/10.1016/j.csite.2021.101247
  92. Schottroff, F., Biebl, D., Gruber, M., Burghardt, N., Schelling, J., Gratz, M., Schoenher, C., & Jaeger, H. (2020). Inactivation of vegetative microorganisms by ohmic heating in the kilohertz range – Evaluation of experimental setups and non-thermal effects. Innovative Food Science & Emerging Technologies, 63, 102372. https://doi.org/10.1016/j.ifset.2020.102372
  93. Setlow, P. (2014). Spore resistance properties. Microbiology Spectrum, 2(5). https://doi.org/10.1128/microbiolspec.TBS-0003-2012
  94. Shao, L., Liu, Y., Tian, X., Wang, H., Yu, Q., Li, X., & Dai, R. (2020). Inactivation of Staphylococcus aureus in phosphate buffered saline and physiological saline using ohmic heating with different voltage gradient and frequency. Journal of Food Engineering, 274, 109834. https://doi.org/10.1016/j.jfoodeng.2019.109834
  95. Shawaqfeh, A., Albaali, G., & Sameer, S. (2019). Numerical simulation of heat transfers during thermal sterilization of a liquid model. Proceedings of the 11th International Conference on Computer Modeling and Simulation, 75–78. https://doi.org/10.1145/3307363.3307393
  96. Shen, J. F., Luo, H. P., Cao, J. B., Wang, R. K., E, S. J., & Xu, C. (2014). Control system design of new nanoelectric boiler. Key Engineering Materials, 620, 329–334. https://doi.org/10.4028/www.scientific.net/KEM.620.329
  97. Schneider, K. R., Schneider, R. M. G., Silverberg, R., Kurdmongkoltham, P., & Bertoldi, B. (2017). Preventing foodborne illness: Bacillus cereus: FSHN15-06/FS269, rev. 4/2017. EDIS, 2017(2):5-5.
  98. Soni, A., Smith, J., Thompson, A., & Brightwell, G. (2020). Microwave-induced thermal sterilization- A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends in Food Science & Technology, 97, 433–442. https://doi.org/10.1016/j.tifs.2020.01.030
  99. Souček, J., Jasinskas, A., Sillinger, F., & Szalay, K. (2019). Determination of mechanical and energetic properties of reed canary grass pellets production. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(3), 757–762. https://doi.org/10.11118/actaun201967030757
  100. Sree, D. G., & Deepika, M. M. (2023). CFD analysis of waste heat boiler‏ . International Journal of Techno-Engineering, 15(2), 196–206. ISSN: 2057-5688. http://ijte.uk/archives-2023-i2.html
  101. Stanytsina, V., Artemchuk, V., Bogoslavska, O., Zaporozhets, A., Kalinichenko, A., Stebila, J., Havrysh, V., & Suszanowicz, D. (2022). Fossil fuel and biofuel boilers in Ukraine: Trends of changes in levelized cost of heat. Energies, 15(19), 7215. https://doi.org/10.3390/en15197215
  102. Subramanian, C., Ghosh, D., Reddy, D. S., Ghosh, D., Natarajan, R., & Velavan, S. P. (2022). Stress corrosion cracking of U tube heat exchanger used for low pressure steam generation in a hydrogen unit of petroleum refinery. Engineering Failure Analysis, 137, 106245.‏ https://doi.org/10.1016/j.engfailanal.2022.106245
  103. Swanepoel, J. K., le Roux, W. G., Lexmond, A. S., & Meyer, J. P. (2021). Helically coiled solar cavity receiver for micro-scale direct steam generation. Applied Thermal Engineering, 185, 116427. https://doi.org/10.1016/j.applthermaleng.2020.116427
  104. Teixeira, A. A. (2019). Thermal processing for food sterilization and preservation. In Kutz,M.(Ed).Handbook of farm, dairy and food machinery engineering .Third Edition, pp: 499–523. Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-814803-7.00020-8
  105. Teng, Y., Sun, P., Leng, O., Chen, Z., & Zhou, G. (2019). Optimal operation strategy for combined heat and power system based on solid electric thermal storage boiler and thermal inertia. IEEE Access, 7, 180761–180770. https://doi.org/10.1109/ACCESS.2019.2958877
  106. Tirawat, D., Meno, A., Fujiwara, H., Higo, K., Noma, S., Igura, N., & Shimoda, M. (2010). Development of rapid hygrothermal pasteurization using saturated water vapor. Innovative Food Science & Emerging Technologies, 11(3), 458–463. https://doi.org/10.1016/j.ifset.2010.01.015
  107. Tognoli, M., Najafi, B., Lucchini, A., Colombo, L. P. M., & Rinaldi, F. (2022). Implementation of a multi-setpoint strategy for fire-tube boilers utilized in food and beverage industry: Estimating the fuel saving potential. Sustainable Energy Technologies and Assessments, 53, 102481. https://doi.org/10.1016/j.seta.2022.102481
  108. Toropov, A. (2023). Wall-mounted electric boilers on semiconductor thermistor PTC heating elements. E3S Web of Conferences, 458, 01016. https://doi.org/10.1051/e3sconf/202345801016
  109. USFDA: U.S. Food and Drug Administration. (2022). Fish and fishery products hazards and controls guidance (June 2022 Edition). https://www.fda.gov/food/seafood-guidance-documents-regulatory-information/fish-and-fishery-products-hazards-and-controls
  110. Vakkilainen, E. K. (2017). Steam Generation from Biomass: Construction and Design of Large Boiler. Butterworth-Heinemann.310pp. https://books.google.iq/books?hl=ar&lr=&id=rQFQCwAAQBAJ&oi=fnd&pg=PP1&dq=Steam+Generation+from+Biomass:+Construction+and+Design+of+Large+Boiler&ots=4T5n-RkPX-&sig=NcfjA7QWa1FYvlOtxrNC3UrZGs8&redir_esc=y#v=onepage&q=Steam%20Generation%20fro
  111. m%20Biomass%3A%20Construction%20and%20Design%20of%20Large%20Boiler&f=false
  112. Vengadesan, E., Gurusamy, P., & Senthil, R.(2023). Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector. Renewable Energy,216,119048.
  113. https://doi.org/10.1016/j.renene.2023.119048
  114. Verma, A., & Singh, S. V. (2015). Spray drying of fruit and vegetable juices—A Review. Critical Reviews in Food Science and Nutrition, 55(5), 701–719. https://doi.org/10.1080/10408398.2012.672939
  115. Verschuur,P. G. (2019). An exploratory study to increase the net present value for the hybrid boiler. University of Twente. https://purl.utwente.nl/essays/77882
  116. Vusić, D., Vujanić, F., Pešić, K., Šafran, B., Jurišić, V., & Zečić, Ž. (2021). Variability of normative properties of wood chips and implications to quality control. Energies, 14(13), 3789. https://doi.org/10.3390/en14133789
  117. Wang, Z., Hu, Y., Zhang, S., & Sun, Y. (2022a). Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chemical Society Reviews, 51(15), 6704-6737.‏ https://doi.org/10.1039/D1CS01008E
  118. Wang, W., Wright, E. M., Uebersax, M. A., & Cichy, K. (2022b). A pilot‐scale dry bean canning and evaluation protocol. Journal of Food Processing and Preservation, 46(9), 1-12. https://doi.org/10.1111/jfpp.16171
  119. WHO: World Health Organization. (2004). Laboratory biosafety manual. 3rd edn. 178pp. https://www.who.int/publications/i/item/9241546506
  120. Widén, J., & Munkhammar, J. (2019). Solar Radiation Theory. Uppsala University. 54pp. https://doi.org/10.33063/diva-381852
  121. Woo, D. G., Kim, S. H., & Kim, T. H. (2021). Solid fuel characteristics of pellets comprising spent coffee grounds and wood powder. Energies, 14(2), 371. https://doi.org/10.3390/en14020371
  122. Woodruff, E. B., Lammers, H. B., & Lammers, T. F. (2017). Steam Plant Operation. 10th Edition. McGraw-Hill Education.802pp. https://www.accessengineeringlibrary.com/content/book/9781259641336
  123. Xiong, Y. L. (2017). The storage and preservation of meat: I—Thermal technologies. In: Lawrie's meat science Woodhead publishing. Pp: 219–244. doi:10.1016/B978-0-08-100694-8.00007-8
  124. Xu, J., Wang, Z., Chang, C., Song, C., Wu, J., Shang, W., Tao, P., & Deng, T. (2019a). Electrically driven interfacial evaporation for high-efficiency steam generation and sterilization. ACS Omega, 4(15), 16603–16611. https://doi.org/10.1021/acsomega.9b02475
  125. Xu, D., Hong, Y., Gu, Z., Cheng, L., Li, Z., & Li, C. (2019b). Effect of high-pressure steam on the eating quality of cooked rice. Lwt, 104, 100-108.‏ https://doi.org/10.1016/j.lwt.2019.01.043
  126. Yan, H., Hu, B., & Wang, R. (2020). Air‐Source heat pump for distributed steam generation: A new and sustainable solution to replace coal‐fired boilers in China. Advanced Sustainable Systems, 4(11). https://doi.org/10.1002/adsu.202000118
  127. Yan, H., Hu, B., & Wang, R. (2021). Air-source heat pump heating based water vapor compression for localized steam sterilization applications during the COVID-19 pandemic. Renewable and Sustainable Energy Reviews, 145, 111026.‏ https://doi.org/10.1016/j.seta.2022.102866
  128. Zhang, S., Zheng, L., Zheng, X., Ai, B., Yang, Y., Pan, Y., & Sheng, Z. (2019). Effect of steam explosion treatments on the functional properties and structure of camellia (Camellia oleifera Abel.) seed cake protein. Food Hydrocolloids, 93, 189-197.‏ https://doi.org/10.1016/j.foodhyd.2019.02.017
  129. Ziaiifar, A. M., & Nedamani, A. R. (2023). Thermal food process calculations. In Jafari,S.M.(Ed.), Thermal processing of food products by steam and hot water: unit operations and processing equipment in the food industry. (pp. 27–66). Elsevier Inc. https://doi.org/10.1016/B978-0-12-818616-9.00005-5
  130. Zion, B., Gollop, R., Barak, M., Sela (Saldinger), S., & Arbel, A. (2021). External disinfection of shell eggs using steam in a Thermal Trap. Food Control, 127, 108135. https://doi.org/10.1016/j.foodcont.2021.108135
  131. Zühlsdorf, B., Bühler, F., Bantle, M., & Elmegaard, B. (2019). Analysis of technologies and potentials for heat pump-based process heat supply above 150 C. Energy Conversion and Management: X, 2, 100011.‏ https://doi.org/10.1016/j.rser.2022.112106

Most read articles by the same author(s)