Main Article Content

Abstract

Enzymes produced by microbial sources are biological molecules that known to catalysts biochemical reactions which roles involve in lead to stimulate the necessary chemical reactions, as well as to the formation of fermented products. Microbial protease, lipase and ?-galactosidase are important examples of such interest in industrial food and dairy product. This is due to their thermoresistant, thermostability and thermoacidophilic properties. In brief, hydrolyses are the substrate which includes some enzymatic reaction that allows to avoid the health and environmental problems, and also to catalyses chemical reaction during the formation of flavor compounds or prebiotic and other products additives in the production and development of healthy dairy food products. Thus, enzymes are one of the relatively important factor that expected to be utilized in large-scale in the process of products development. This review focused on the importance and application of three major enzymes that microbial produce which  are of great interest in dairy industries and have positive impact on consumer’s health.

Keywords

Microbial enzymes Protease Lipase, ?-galactosidase Application

Article Details

How to Cite
Al-Manhel, A. J. A. . (2018). Application of Microbial Enzymes in Dairy Products: A Review. Basrah Journal of Agricultural Sciences, 31(1), 20–30. https://doi.org/10.37077/25200860.2018.72

References

  1. Aehle, W. (2007). Enzymes in industry: Production and applications. 3rd ed. Wiley- VCH Verlag GmbH &kGaA. Deutsche. 516pp.
  2. Aguilar, C.; Sanchez, G.; Barragan, P.; Herrera, R.; Hernandez & Esquivel, J. (2008). Perspectives of solid state fermentation for production of food enzymes. American Journal of Biochemistry and Biotechnology, 4(4): 354-366.
  3. Al-Jazairi, M.; Abou-ghorra, S.; Bakri, Y. & Mustafa, M. (2015). Optimization of ?- galactosidase production by response surface methodology using locally isolated Kluyveromyces marxianus. International Food Research Journal, 22(4): 1361-1367.
  4. Al-Manhel, A.J.A. (2011). Purification, characterization and Immobilization of ?- galactosidase produced from mold Aspergillus oryzae by solid state fermentations and it's applications in some dairy products. Ph. D. Thesis, Univ. Basrah, Iraq. 171pp.
  5. Brahmachari, G.; Demain, A.L. & Adrio, J.L. (2017). Biotechnology of microbial Enzymes Production, Biocatalysis and Industrial Applications. Academic Press: 608pp.
  6. Carevi?, M.; Vukašinovi?-Sekuli?, M.; Grbav?i?, S.; Stojanovi?, M.; Mihailovi?, M.; Dimitrijevi?, A. & Bezbradica, D. (2015). Optimization of ?-galactosidase production from lactic acid bacteria. Hem. Ind., 69(3): 305-312.
  7. Chen, W.; Chen, H.; Xia, Y.; Zhao, J.; Tian, F. & Zhang, H. (2008). Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. Journal of Dairy Science, 91(5): 1751-1758.
  8. Chutmanop, J.; Chuichulcherm, S.; Chisti,Y. & Srinophakun, P. (2008). Protease production by Aspergillus oryzae in solid- state fermentation using agroindustrial substrates. J. Chem. Technol. Biotechnol., 83: 1012-1018.
  9. Cruz, R.; Cruz,V.D.A.; Belote, J.G.; Khenayfes, M.O.; Dorta, C. & Oliveira, L.H.S. (1999). Properties of a new fungal ?- galactosidase with potential application in the dairy industry. Revista de Microbiologia, 30: 265-271.
  10. El-Enshasy, H.A. & Elsayed, E.A. (2017). Kinetics of cell growth and invertase production by the biotherapeutic yeast Saccharomyces boulardii. Journal of Scientific and Industrial Research, 76: 477-484.
  11. El-Gindy, A.; Ibrahim, Z. & Aziz, H. (2009). Improvement of extracellular ?- galactosidase production by thermophilic fungi Chaetomium thermophile and Thermomyces lanuginosus. Australian Journal of Basic and Applied Sciences, 3(3): 1925-1932.
  12. Feijoo-Siota, L.;Blasco, L.; Rodríguez-Rama, J.L.; Barros-Velázquez, J.; de Miguel, T.; Sánchez-Pérez, A. & Villa, T.G. (2014). Recent Patents on Microbial Proteases for the Dairy Industry. Recent Advances in DNA and Gene Sequences, 8: 44-55.
  13. Geiger, B.; Nguyena, H.; Weniga, S.; Nguyena, H.A; Lorenz ,C.; Kittl, R.; Mathiesend, G.; Eijsink, V.G.H & Haltricha, D. (2016). From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using ?- galactosidase from Streptococcus thermophilus. Biochemical Engineering Journal, 116: 45-53.
  14. Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K. & Reid, G. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 14: 491-502.
  15. Grand, D. (2017). Lipases industrial applications: focus on food and agroindustries. OCL, 24(4): 1-7.
  16. Haider, T. & Husain, Q. (2009). Immobilization of ? -galactosidase by bioaffinity adsorption on concanavalin a layered calcium alginate-starch hybrid beads for the hydrolysis of lactose from whey/milk. International Dairy Journal, 19(3): 172-177.
  17. Hsu, C.A.; Yu, R.C.; Lee, S.L. & Chou, C.C. (2007). Cultural condition affecting the growth and production of ?-galactosidase by Bifidobacterium longum CCRC 15708 in a jar fermenter. International J. Food Microbiol.,116: 186-189.
  18. Jooyandeh, H.; Kaur, A. & Minhas, K. (2009). Lipases in dairy industry: A review. J. Food Sci Technol., 46(3): 181- 189.
  19. Jaramillo, P.M.D.; Gomes, H.A.R.; Monclaro, A.V.; Silva, C.O.G. & Filho, E.X.F. (2015). Lignocellulose degrading enzymes: An overview of the global market. pp. 73-85. In: Gupta, V.K.; Mach, R.L. & Sreenivasaprasad, S. (Eds.). Fungal Biomolecules: Sources, Applications and Recent Developments. John Wiley & Sons, Ltd., Chichester: 386pp.
  20. Kazemi, S.; Khayati, G. & Faezi- Ghasemi, M. (2016). ?-galactosidase Production by Aspergillus niger ATCC 9142 using inexpensive substrates in solid-state fermentation: optimization by orthogonal arrays design. Iranian Biomedical Journal, 20 (5): 287-294.
  21. Kiesenhofer, D.P.; Mach, R.L. & Mach- Aigner, A.R. (2017). Glucose oxidase production from sustainable substrates. Current Biotechnology, 6: 238-244.
  22. Laili, N. & Antonius, S. (2015). Production and characterization of extracellular protease from Bacillus sp. 140-B isolated from pineapple plantation in Lampung, Indonesia. ICBS Conf. Proc. Int. Conf. on Biological Science (2015), Vol. 2017: 170-
  23. Lanka, S.; Anjali, AH. & Pydipalli, M. (2017). Enhanced production of alkaline protease by Aspergillus niger DEF1 isolated from dairy form effluent and determination of its fibrinolytic ability. African Journal of Microbiology Research, 11(11): 440-449.
  24. Li, S.; Yang, X.; Yang, S.; Zhu, M. & Wang, X. (2012). Technology prospecting on enzyme: application, marketing and engineering. Computational and Structural Biotechnology Journal, 2: 1-11.
  25. Mahoney, R.R. (2003). ? –galactosidase, Pp: 805-810 In Whitaker, J.R.; Voragen, A.G.J. & Wong, D.W.S. (Eds.). Handbook of Food Enzymology. Marcel Dekker, Inc., New York: 1052pp.
  26. Mahoney, R.R. & Whitaker, J.R. (1978). Purification and physiochemical properties of ?-galactosidase from Kluyveromyces fragilis. J. Food. Sci., 43: 584-591.
  27. Maksimainen, M.; Hakulinen, N.; Kallio, J.M.; Timoharju,T.; Turunen, O. & Rouvinen, J. (2011). Crystal structures of Trichoderma reesei ?-galactosidase reveal conformational changes in the active site. Journal of Structural Biology, 174: 156-163.
  28. Manzanares, P.; Graaff, L., H. & Visser, J. (1998). Characterization of galactosidase from Aspergillus niger: Purification of a novel ?- galactosidas activity. Enzyme and Microbial Technology, 22: 383-390.
  29. Marrakchi, M.; Dzyadevych, S.V.; Lagarde, F.; Martelet, C. & Jaffrezic-Renault, N. (2008). Conductometric biosensor based on glucose oxidase and beta-galactosidase for specific lactose determination in milk. Material Science and Engineering C., 28: 872- 875.
  30. Mlichova, Z. & Rosenberg, M. (2006). Current trends of ?-galactosidase application in food technology. Journal of Food and Nutrition Research, 45(2): 47-54.
  31. Naimah, A.K.; Al?Manhel, A.J.A. & Al? Shawi, M.J. (2018). Isolation, purification and characterization of antimicrobial peptides produced from Saccharomyces boulardii. Int. J. Pept. Res. Ther. (In Press).
  32. Nandimath, A.B; Kharat, K.R.; Gupta, S.G & Kharat, A.S. (2016). Optimization of cellulase production for Bacillus sp. and Pseudomonas sp. soil isolates. African Journal of Microbiology Research, 10(13): 410-419.
  33. Nivetha, A. & Mohanasrinivasan, V. (2017). Mini review on role of ?-galactosidase in lactose intolerance. VIOP Conf. Series: Materials Science and Engineering, 263: 1-6.
  34. Nizamuddin, S.; Sridevi, A. & Narasimha, G. (2008). Production of ? -galactosidase by Aspergillus oryzae in solid-state fermentation. African Journal of Biotechnology, 7(8): 1096-1100.
  35. O’Connell, S. & Walsh, G. (2010). A novel acid-stable, acid-active ?-galactosidase potentially suited to the alleviation of lactose intolerance. Applied Microbiology and Biotechnology, 86(2): 517-524.
  36. Ortiz, G.E.; Ponce?Mora, M.C.; Diego G. Noseda, D.G.; Cazabat, G.; Saravalli, C.; Lopez, M.C.; Gil, G.P.; Blasco, M. & Alberto, E.O. (2017). Pectinase production by Aspergillus giganteus in solid?state fermentation: optimization, scale?up, biochemical characterization and its application in olive?oil extraction. J. Ind. Microbiol. Biotechnol., 44(2): 197-211.
  37. Rech, R. & Ayub, M.A.Z. (2006). Fed-batch bioreactor process with recombinant Saccharomyces cerevisae growing on cheese whey. Brazilian Journal of Chemical Engineering, 23: 435-442.
  38. Roses, R.P. & Guerra, N.P. (2009). Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J. Microbiol. Biotechnol., 25: 1929-1939.
  39. Saad, R.R. (2004). Purification and some properties of ?-galactosidase from Aspergillus japonicus. Annals of Microbiology, 54 (3): 299-306.
  40. Salihu, A.; Abbas, O.; Sallau, A.B. & Alam,M.Z. (2015). Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3 Biotech., 5(6): 1101-1106.
  41. Sangwan, V.; Tomar, S.K.; Ali, B.; Singh, R.R.B. & Singh, A.K. (2015). Production of ?-galactosidase from Streptococcus thermophilus for galacto oligosaccharides synthesis. J. Food Sci. Technol., 52(7): 4206-4215.
  42. Saqib, S.; Akram, A.; Halim, S.A. & Tassaduq, R. (2017). Sources of ?- galactosidase and its applications in food industry. 3 Biotech, 7: 1-7.
  43. Seyis, I. & Aksoz, N. (2004). Production of lactase by Trichoderma sp. Food Technol. Biotechnol., 42(2): 121-124.
  44. Shaikh, S. A.; Khire, J.M. & Khan, M.I. (1997). Production of ?-galactosidase from thermophilic fungus Rhizomucor sp.. Journal of Industrial Microbiology and Biotechnology, 19: 239 -245.
  45. Sharma, S. & Singh, P. (2014). Isolation and characterization of ?-galactosidase enzyme producing microbe and optimization of its enzyme activity under different culture condition. Int. J. Curr. Microbiol. App. Sci., 3(7) :148-155.
  46. Sharma, K.M.; Kumar, R.; Surbhi Panwar, S. & Kumar, A. (2017). Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology, 15(1): 115-126.
  47. Simair, A.A.; Khushk, I.; Qureshi, A.S.; Bhutto, M.A.; Chaudhry ,H.A.; Ansari, K.A. & Lu, C. (2017). Amylase production from thermophilic Bacillus sp. BCC 021-50 isolated from a Marine Environment. Fermentation, 3(2): 1-12.
  48. Simpson, B.K. (2012). Food Biochemistry and Food Processing. 2ed ed. John Wiley and Sons, Inc.: 912pp.
  49. Singh, R.; Kumar, M.; Mittal, A. & Mehta, P.K. (2016). Microbial enzymes: Industrial progress in 21th century. 3 Biotech, 6(2): 1-15.
  50. Ugras, S. (2017). Characterization of a thermophilic lipase from Bacillus licheniformis Ht7 isolated from Hayran Thermal Springs in Giresun. Romanian Biotechnological Letters, 22(1): 12297-12306.
  51. Vaseghi, Z.; Najafpour, G.D.; Mohseni, S. & Mahjoub, S. (2012). Production of active lipase by Rhizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor. International Journal of Food Science and Technology, 48(2): 1-7.
  52. Viniegra-González, G.; Torres, E.; Aguilar, N.; Gomez, S.; God´?nez, D. & Augur, C. (2003). Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal, 13: 157-167.
  53. Whitaker, J.R. (2003). Proteolytic Enzymes, Pp:969-994 In Whitaker, J.R.; Voragen, A.G.J. & Wong, D.W.S. (Eds.). Handbook of Food Enzymology. Marcel Dekker, Inc., New York: 1052pp.
  54. Wong, D.W.S. (2003). Lipase, Pp:653-666 In Whitaker, J.R.; Voragen, A.G.J. & Wong, D.W.S. (Eds.). Handbook of Food Enzymology. Marcel Dekker, Inc., New York: 1052pp.
  55. Woychik, J.H. & Wondolowski, M.V. (1973). Lactose hydrolysis in milk and milk products by bound fungal beta- galactosidase. J. Milk Food Technol., 36(1): 31-33.