Effect of Microwave and UV-C Radiation on Some Germination Parameters of Barley Seed Using Mathematical Models of Gompertz and Logistic

Analysis Study


  • Samir K. Lazim Department of Agricultural Machines and Equipment, College of Agriculture, University of Basrah, Iraq
  • Marwan N. Ramadhan Department of Agricultural Machines and Equipment, College of Agriculture, University of Basrah, Iraq




Microwave radiation, Ultraviolet radiation, Germination parameters, Logistic function, Gompertz function, inflection point


Two separated sets of laboratory experiments were studied for barley seeds treating using a microwave and ultraviolet irradiation. In the microwave set, seeds have been exposed to the microwave radiations (2450 MHz) for 0 sec (control, MW0), 5 sec (MW1), 10 sec (MW2), and 20 sec (MW3), while in the ultraviolet set, seeds have exposed to UV-C radiation (254 nm) for 0 min (control, UV0), 30 min (UV1), 60 min (UV2), and 120 min (UV3). The aim is to study the influences of different exposure time from MW and UV-C radiation on some barley seed germination parameters and to choose the fitting model Logistic (Log) or Gompertz (Gom) suited to cumulative germination curves under the influence of these factors.  The results of this study showed higher seed germination percentage (93.33%) at the exposure time MW2 and UV3 (88.33%), whereas the lowest value (66.67%) recorded in MW3 treatment. The results also appeared the best values at MW2 in SG, 6.24 seed day-1; in GRI, 31.19% day-1, and in GI, 87.67, as well as at UV2 in MGT, 3.32 day. The higher value of asymptotic germination barley seeds was found with Gom function (97.24%, and 88.71%) at MW2 and UV3, respectively. Besides, Gom functions at MW1 and UV2 give the highest maximum germination rates at 2,08 and 2.51% h-1, respectively. The results of the Log equation illustrated the highest value of germination percentage of the inflection point has recorded in 43.85 and 47.37 % on UV3 and MW2 treatments, respectively. For the fitting growth curve, the results have proven that the Gom function was shown the lowest values in MSE in all MW and UV exposure times, as compared with the Log function. So, the results of the Gom function were more fit for the growth curve for MW and UV treatments, as compared with the Log function.


Download data is not yet available.


Abu-Elsaoud, A. M. (2015). Effect of microwave electromagnetic radio frequency on germination and seedling growth consequences of six wheat Triticum aestivum L. cultivars. Advances in Environmental Biology, 9, 270-280. https://www.researchgate.net/publication/286001801

Abu-Elsaoud, A. M., & Qari, S. H. (2017). Influence of microwave irradiations on germination, seedling growth and electrolyte leakage of Barley (Hordeum vulgare L.). Catrina, 16, 11-24. https://cat.journals.ekb.eg/article_14255_56f69e03019247e811accc1f85ba70b5.pdf

Aboul Fotouh, M. M., Moawad, F. G., ElNaggar H. A., Tag El-Din, M. A., & Sharaf Eldeen, H. A. (2014). Influence of seed treatment with UV-C on saline stress tolerance in green beans (Phaseolus vulgaris L.). Journal of Biological Chemistry and Environmental Sciences, 9, 391-414. https://www.researchgate.net/publication/263279203

Aladjadjiyan, A. (2010). Effect of microwave irradiation on seeds of lentils (Lens Culinaris, Med). Romanian Journal of Biophysics, 20, 213–221. https://www.researchgate.net/publication/207703684

Al Mashhdani, F. A., & Muhammed, S. S. (2016). Utilization of microwave treatments for germination and α-amylase characteristics in some cereals. International Journal of Current Microbiology and Applied Sciences, 5, 293-306. https://doi.org/10.20546/ijcmas.2016.505.032

Amirnia, R. (2014). Effect of Microwave Radiation on Germination and Seedling Growth of Soybean (Glycine max) Seeds. Advances in Environmental Biology, 8, 311-314. https://www.researchgate.net/publication/316824478

Araujo S. S., Paparella, S., Dondi, D., Bentivoglio, A., Carbonera, D., & Balestrazzi, A. (2016). Physical methods for seed invigoration: Advents and challenges in seed technology, Frontiers in Plant Science, 7, 646. https://doi.org/10.3389/fpls.2016.00646

Badridze, G., Kacharava, N., Chkhubianishvili, E., Rapava, L., kikvidze, M., Chanishvili, S. H., & Chigladze, L. (2015). Influence of ultraviolet irradiation and acid precipitations on the content of antioxidants in wheat leaves, Applied Ecology and Environmental Research, 13, 993-1013. https://doi.org/10.15666/aeer/1304_9931013

Berry, G. J., Cawoodf, R. J., & Flood, R. G. (1988). Curve fitting of germination data using the Richards function, Plant, Cell and Environment, 11, 183-188. https://doi.org/10.1111/j.1365-3040.1988.tb01135.x

Bonner, F. T., & Dell, T. R. (1976). The Weibull function: A new method of comparing seed vigor. Journal of Seed Technology, 1, 96-103. https://doi.org/10.2307/23430404

Bridges, C. D., Wu H., Sharpe, P. J. H., & Chandler J. M. (1989). Modeling distributions of crop and weed seed germination time. Weed Science, 37, 724-729. DOI: https://doi.org/10.1017/S0043174500072702

Chen, Y. P., LiuI, Y. J., Wang, X. L., Ren, Z. Y., & Yue, M. (2005). Effect of Microwave and He-Ne Laser on Enzyme Activity and Biophoton Emission of Isatis indigotica Fort. Journal of Integrative Plant Biology (Formerly Acta Botanica Sinica), 47, 849−855.https://doi.org/10.1111/j.1744-7909.2005.00107.x

Esechie, H. (1994). Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, 172, 194–199. https://doi.org/10.1111/j.1439-037X.1994.tb00166.x

Govindaraj, M., Masilamani, P., Albert, V. A., & Bhaskaran, M. (2017). Effect of physical seed treatment on yield and quality of crops: A review. Agricultural Reviews, 38, 1-14. https://doi.org/10.18805/ag.v0iOF.7304

Gupta, M. K., Chandra, P., Samuel, D. V. K., Singh, B., Singh, A., & Garg, M. K. (2012). Modeling of Tomato Seedling Growth in Greenhouse. Journal of Agricultural Science, 1, 362-369. https://doi.org/10.1007/s40003-012-0035-5

Hara,Y. (1999). Calculation of population Parameters using Richards function and application of indices of growth and seed vigor to rice plants. Plant Production Science, 2, 129-135. https://doi.org/10.1626/pps.2.129

Hsu, F. H., Nelson, C. J., & Chow, W. S. (1984). A mathematical model to utilize the logistic function in germination and seedling growth. Journal of Experimental Botany, 351, 1629-40. https://doi.org/10.1093/jxb/35.11.1629

Iuliana, C., Caprita, R. , Giancarla, V., Sorina R., & Genoveva, B. (2013). Response of Barley Seedlings to Microwaves at 2.45 GHz. Animal Science and Biotechnologies, 46, 185-191. file:///C:/Users/lenovo/Downloads/82-999-1-PB%20(4).pdf

Jakubowski, T. (2015). Evaluation of the impact of pre-sowing microwave stimulation of bean seeds of the germination process. Agricultural Engineering, 2, 45-56. http://dx.medra.org/10.14654/ir.2015.154.120

Kader, M. A., (2005). A Comparison of Seed Germination Calculation Formulae and the Associated Interpretation of Resulting Data. Journal & Proceedings of the Royal Society of New South Wales, 138, 65-75. https://pdfs.semanticscholar.org/cbb8/ac13a5a6de85cb84b3f7093623aec7ae9b02.pdf?_ga=2.19136760.1765175035.1598026742-1401878489.1544551206

Karadavut, U. , Kayi S. A., Palta, C., & Okur, O. (2008). A growth curve application to compare plant heights and dry weights of some wheat varieties. American-Eurasian Journal of Agricultural & Environmental Sciences, 3, 888-892. https://www.researchgate.net/publication/237559162

Kretova, Y., Tsirulnichenko, L., Naumenko, N., Popova, N., & Kalinina, I. (2018). The application of micro-wave treatment to reduce barley contamination. Agronomy Research, 16, 2079- 2087.https://doi.org/10.15159/AR.18.198

Kuzugudenli, E. (2018). Effect of microwave radiation on growth and germination of stone pine (PINUS PINEA L.) seedlings. Applied Ecology and Environmental Research, 16, 2837-2844. DOI: http://dx.doi.org/10.15666/aeer/1603_28372844

Lazim, S. K., & Nasur, A. F. (2017). The effect of magnetic field and ultraviolet-C radiation on germination and growth seedling of sorghum (Sorghum bicolor L. Moench). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 10, 30-36. DOI: 10.9790/2380-1010023036

Lazim, S. K., & Ramadhan, M. (2020). Study effect of a static magnetic field and microwave irradiation on wheat seed germination using different curves fitting model. Journal of Green Engineering, 10, 3188-3205. https://www.researchgate.net/publication/343230736

Matwijczuk, A., Kornarzyñski, K., & Pietruszewski, S. (2012). Effect of magnetic field on seed germination and seedling growth of sunflower, International Agrophys, 26, 271-278. https://doi.org/10.2478/v10247-012-0039-1

Mohammad, R. M., Campbell, W. F., & Rumbaugh, M. D. (1989) Variation in salt tolerance of alfalfa. Arid Soil Research and Rehabilitation, 3, 11-20. https://doi.org/10.1080/15324988909381185

Mohsenkhah, M., Mahzoon, M., & Talei, D. (2018). Microwave radiation, seed germination and seedling growth responses in pepper (Capsicum annuum L.). Horticulture International Journal, 2, 332‒336. DOI: 10.15406/hij.2018.02.00072

Muszynski, S., & Gldyszewska, B. (2008). Representation of He-Ne laser irradiation effect on radish seeds with selected germination indices. International Agrophysics, 22, 151-157. http://www.international-agrophysics.org/Representation-of-He-Ne-laser-irradiation-effect-on-radish-seeds-with-selected-germination,106487,0,2.html

Nasur, A. F., & Lazim, S. K. (2001). The effect of Ultraviolet Radiation on Germination and Growth of Wheat and Barley. Basrah Journal of Agricultural Sciences, 14, 157-167. https://www. researchgate. net/publication/320799155

Neelamegam, R., & Sutha, T. (2015). UV-C irradiation effect on seed germination, seedling growth and productivity of groundnut (Arachis hypogaea L.). International Journal of Current Microbiology and Applied Sciences, 4, 430-443.http://eprints.icrisat.ac.in/14038/

Oraki, H.; Alahdadi, I., & khajani, F. P. (2011). Sunflower (Helianthus annuus L.) hybrids seeds distribution modelling: Normal, lognormal and weibull models. African Journal of Agricultural Research, 6, 618-623. https://doi.org/10.5897/AJAR10.777

Peykarestan, B., & Seify, M. (2012). UV irradiation effects on seed germination and growth, protein content, peroxidase and protease activity in red bean. International Journal of Basic and Applied Sciences, 3, 92-102. http://www.irjabs.com/files_site/paperlist/r_252_121016141830.pdf

Rogozhin, V. V., Kuriliuk, T. T., & Filippova, N. P. (2000). Change in the reaction of the antioxidant system of wheat sprouts after UV-irradiation of seeds. Biofizika, 45, 730-736. https://pubmed.ncbi.nlm.nih.gov/11040985/

Rupiasih, N. N., & Vidyasagar, P. B. (2016). Effect of UV-C radiation and hypergravity on germination, growth and content chlorophyll of wheat seedlings // AIP Conference Proceeding. 1719, 030035. https://doi.org/10.1063/1.4943730

Sadeghianfar, P., Nazari, M., & Backes, G. (2019). Exposure to ultraviolet (UV-C) radiation increases germination rate of maize (Zea maize L.) and sugar beet (Beta vulgaris) seeds. Plants, 8, 1-6. https://doi.org/10.3390/plants8020049

Siddiqui, A., Dawar, S., Zaki M. J., & Hamid, N. (2011). Role of Ultra violet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. Pakistan Journal of Botany, 43, 2221-2224. https://doi.org/10.3390/plants8020049

Soltani, E., Ghaderi-Far, F., Baskin, C. C., & Baskin, J. M. (2015). Problems with using mean germination time to calculate rate of seed germination. Australian Journal of Botany, 63, 631-635. https://doi.org/10.1071/BT15133

Sousa, I. F., Neto, J. E. K., Muniz, J. A., Guimaraes, R. M.; Savian, T. V., & Muniz, F. R. (2014). Fitting non lin arauto regressive models to describe coffee seed germination. Ciencia Rural, 44, 2016-2021. https://doi.org/10.1590/0103-8478cr20131341.

Szparaga, A., & Czerwinska, E. (2017). Modelling of beetroot seedlings with modified generalized logistic functions. Agricultural Engineering, 21, 107-117.https://doi.org/10.1515/agriceng-2017-003

Torres, M., Boada, P. S., & Duran, J. M. (1988). Growth analysis by different mathematical models of barley plants after U.V. -A irradiation. Environmental and Experimental Botany, 28, 315-321. https://doi.org/10.1016/0098-8472(88)90055-X

Wang, S., Wang, J., & Guo, Y. (2018) Microwave irradiation enhances the germination rate of tartary buckwheat and content of some compounds in its sprouts. Polish Journal of Food and Nutrition Sciences, 68, 195-205. https://doi.org/10.1515/pjfns-2017-0025



How to Cite

Lazim, S. K., & Ramadhan, M. N. (2020). Effect of Microwave and UV-C Radiation on Some Germination Parameters of Barley Seed Using Mathematical Models of Gompertz and Logistic: Analysis Study. Basrah J. Agric. Sci., 33(2), 28-41. https://doi.org/10.37077/25200860.2020.33.2.03