Main Article Content


Using of foliar fertilizer application is an important issue in many crops plantation in different countries. Various studies have been conducted on this method, especially with fruits and horticulture. Few studies were performed on essential crops such as maize compared to the orchards. Concerning crops, most of these studies were performed using foliar spraying with phosphorus, and potassium, and a few attempts were carried out with foliar fertilizer during the season at different concentrations starting from the first stage of the plant. The foliar application may be sprayed with a suitable concentrate depending on the type of crop planted, growth stage, leaves age, and physicochemical properties of the sprayed liquid. As reported in the current literature, there are previous studies on this application with insufficient knowledge of mechanisms and factors governing the nutrient uptake by leaves that still need to be improved. The insufficient information about the effect of foliar fertilizer at different application rates is one of the reasons that the study focused on it, which was probably the leading cause of sometimes controversial effects with foliar fertilizers being reported. Most previous studies revealed that is necessary to apply foliar fertilizer on the plant leaves at a proper concentration and application rate compatible with the age of the crop applied. The results also indicated that a suitable concentration of foliar fertilizer no doubt leads to improved fertilizer effectiveness and can even increase plant growth activity, especially when spraying with modern technology. For an optimum both of the crop vegetative growth and yield response to foliar fertilization, it is possible to diagnose the optimum growth stage of the plant and leaf age for the starting of foliar fertilizer application related to metrological conditions such as the air temperature, and relative humidity at the time of spraying. It is necessary to recommend the crop growth stage before foliar application at a known application rate and concentration to a crop to achieve maximum efficiency at low cost as possible.


Application method Spray droplets characteristics Sprayer setup

Article Details

How to Cite
Alheidary, M. H. R. . (2023). Spraying Technology and Foliar Application Result in a Smooth Layer of the Spray: a Literature Review. Basrah Journal of Agricultural Sciences, 36(2), 334–374.


  1. Abboud, R. L., & Al-Assaf, M. A. (2020). Effect of spraying date of boron on vegetative growth and yield of cotton plant (Gossypium hirsutum L.) Lashata variety. IOP Conference Series: Earth and Environmental Science, 553(1), 012035.
  3. Adamec, L. (2002). Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytologist, 155(1), 89–100.
  4. Adeoluwa, O. O., Mutengwa, C. S., Chiduza, C., & Tandzi, N. L. (2022). Nitrogen use efficiency of quality protein maize (Zea mays L.) genotypes. Agronomy, 12(5), 1118.
  6. Al Heidary, M., Douzals, J. P., Sinfort, C., & Vallet, A. (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Protection, 63, 120–130.
  8. Alberto, L., Luz, M. S. da, Santos, K. G. dos, & Okura, M. H. (2022). Enhanced solubility of foliar fertilizer via spray dryer: Process analysis and productivity optimization by response surface methodology. Ciência e Agrotecnologia, 46, e002422.
  10. Alheidary, M. H., Al-shaheen, M. S., & Al abdullah, S. A. (2020). The role of sprayer`s characteristics and foliar spraying for improving the maize growth and yield. Basrah Journal of Agricultural Sciences., 33(2), 182195.
  12. Alidoost Dafsari, R., Yu, S., Choi, Y., & Lee, J. (2021). Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour. Biosystems Engineering, 209, 14–29.
  14. Al-Maliky, A. W. A., Jerry, A. N., & Obead, F. I. (2019). The Effects of foliar spraying of folic acid and cysteine on growth, chemical composition of leaves and green yield of faba bean (Vicia faba L.). Basrah Journal of Agricultural Sciences, 32(2), 223–229.
  15. Alshaal, T., & El-Ramady, H. (2017). Foliar application: From plant nutrition to biofortification. Environment, Biodiversity and Soil Security, 1(2017), 71-83.
  17. Alzamel, N. M., Taha, E. M. M., Bakr, A. A. A., & Loutfy, N. (2022). Effect of organic and inorganic fertilizers on soil properties, growth yield, and physiochemical properties of sunflower seeds and oils. Sustainability, 14(19), 12928.
  19. Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of northeast Thailand: A review. Agronomy, 10(8), 1061.
  21. Asibi, A. E., Chai, Q., & A. Coulter, J. (2019). Mechanisms of nitrogen use in maize. Agronomy, 9(12), 775.
  22. Aveyard, B. (2019). Wetting. Pp. 427–464. In Aveyard, B. (Editor). Surfactants. Oxford University Press.
  23. Baales, J., Zeisler-Diehl, V. V., Malkowsky, Y., & Schreiber, L. (2022). Interaction of surfactants with barley leaf surfaces: Time-dependent recovery of contact angles is due to foliar uptake of surfactants. Planta, 255(1), 1.
  25. Barłóg, P., Grzebisz, W., & Łukowiak, R. (2022). Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants, 11(14), 1855.
  27. Begizew, G. (2021). Agricultural production system in arid and semi-arid regions. International Journal of Agricultural Science and Food Technology, 7(2), 234–244.
  29. Beig, B., Niazi, M. B. K., Sher, F., Jahan, Z., Malik, U. S., Khan, M. D., Américo-Pinheiro, J. H. P., & Vo, D.-V. N. (2022). Nanotechnology-based controlled release of sustainable fertilizers. A review. Environmental Chemistry Letters, 20(4), 2709–2726.
  31. Bhattacharya, A. (2019). Nitrogen-use efficiency under changing climatic conditions. Pp, 181–240. In Bhattacharya, A. (Editor). Changing climate and resource use efficiency in plants. Elsevier.
  33. Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Applied Sciences, 3(4), 518.
  35. Bojtor, C., Mousavi, S. M. N., Illés, Á., Golzardi, F., Széles, A., Szabó, A., Nagy, J., & Marton, C. L. (2022). Nutrient composition analysis of maize hybrids affected by different nitrogen fertilisation systems. Plants, 11(12), 1593.
  37. Carvalho, F. K., Antuniassi, U. R., Chechetto, R. G., Mota, A. A. B., de Jesus, M. G., & de Carvalho, L. R. (2017). Viscosity, surface tension and droplet size of sprays of different formulations of insecticides and fungicides. Crop Protection, 101, 19–23.
  39. Chen, M., Zhu, X., Zhang, Y., Du, Z., Chen, X., Kong, X., Sun, W., & Chen, C. (2020). Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Scientific Reports, 10(1), 6696.
  41. Ciampitti, I. A., & Vyn, T. J. (2011). A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research, 121(1), 2–18.
  43. Corriveau, J., Gaudreau, L., Caron, J., Jenni, S., & Gosselin, A. (2012). Testing irrigation, day/night foliar spraying, foliar calcium and growth inhibitor as possible cultural practices to reduce tipburn in lettuce. Canadian Journal of Plant Science, 92(5), 889–899.
  44. Dass, A., Rajanna, G. A., Babu, S., Lal, S. K., Choudhary, A. K., Singh, R., Rathore, S. S., Kaur, R., Dhar, S., Singh, T., Raj, R., Shekhawat, K., Singh, C., & Kumar, B. (2022). Foliar application of macro- and micronutrients improves the productivity, economic returns, and resource-use efficiency of soybean in a semiarid climate. Sustainability, 14(10), 5825.
  46. de Oliveira, R. B., Bonadio Precipito, L. M., Gandolfo, M. A., de Oliveira, J. V., & Lucio, F. R. (2019). Effect of droplet size and leaf surface on retention of 2,4-D formulations. Crop Protection, 119, 97–101.
  48. Dekeyser, D., Foqué, D., Duga, A. T., Verboven, P., Hendrickx, N., & Nuyttens, D. (2014). Spray deposition assessment using different application techniques in artificial orchard trees. Crop Protection, 64, 187–197.
  50. Dengeru, Y., Ramasamy, K., Allimuthu, S., Balakrishnan, S., Kumar, A. P. M., Kannan, B., & Karuppasami, K. M. (2022). Study on spray deposition and drift characteristics of uav agricultural sprayer for application of insecticide in redgram crop (Cajanus cajan L. Millsp.). Agronomy, 12(12), 3196.
  52. Ebel, R. (2020). Yield response of a polycropping system with maize to fermented foliar fertilizers. CIENCIA ergo sum, 27(3), e98.
  53. Eibner, R. (1986). Foliar Fertilization—importance and prospects in crop production. Pp. 3–13. In Alexander, A. (Editor). Foliar Fertilization. Springer Dordrecht. 488pp.
  55. Elbasiouny, H., El-Ramady, H., Elbehiry, F., Rajput, V. D., Minkina, T., & Mandzhieva, S. (2022). Plant nutrition under climate change and soil carbon sequestration. Sustainability, 14(2), 914.
  57. Faber, A., & Fotyma, M. (1986). The Efficiency of Foliar Fertilization of Spring Barley. Pp. 426–430. In Alexander, A. (Editor). Foliar Fertilization. Springer Dordrecht. 488pp.
  59. Fageria, N. K., & Baligar, V. C. (2005). Nutrient availability. Pp. 63–71. In Hillel, D. (Editor). Encyclopedia of Soils in the Environment. Academic Press.
  61. Fageria, N. K., Filho, M. P. B., Moreira, A., & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044–1064.
  63. Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.
  65. Failla, S., & Romano, E. (2020). Effect of spray application technique on spray deposition and losses in a greenhouse vegetable nursery. Sustainability, 12(17), 7052.
  67. Falls, J. H., & Siegel, S. A. (2005). Fertilizers. Pp. 1–8. In Encyclopedia of Analytical Science. Elsevier.
  69. Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461–481.
  71. Fernández, V., & Brown, P. H. (2013). From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Frontiers in Plant Science, 4. 289.
  73. Fernández, V., & Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Critical Reviews in Plant Sciences, 28(1–2), 36–68.
  75. Ferrari, M., Dal Cortivo, C., Panozzo, A., Barion, G., Visioli, G., Giannelli, G., & Vamerali, T. (2021). Comparing soil vs. foliar nitrogen supply of the whole fertilizer dose in common wheat. Agronomy, 11(11), 2138.
  77. Finch, H. J. S., Samuel, A. M., & Lane, G. P. F. (2014). Fertilisers and manures. Pp. 63–91. In Finch, H. J. S., Samuel, A. M., & Lane, G. P. F. (Editors). Lockhart & Wiseman’s Crop Husbandry Including Grassland. Nine edition, Woodhead Publishing.
  79. Foqué, D., & Nuyttens, D. (2011). Effects of nozzle type and spray angle on spray deposition in ivy pot plants. Pest Management Science, 67(2), 199–208.
  81. Fornasiero, D., Mori, N., Tirello, P., Pozzebon, A., Duso, C., Tescari, E., Bradascio, R., & Otto, S. (2017). Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards. Crop Protection, 98, 283–292.
  83. Fu, W., Song, L., Liu, T., & Lin, Q. (2019). Experimental study of spray characteristics of biodiesel blending with diethyl carbonate in a common rail injection system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2), 249–262.
  84. Garcerá, C., Vicent, A., & Chueca, P. (2020). Effect of spray volume, application timing and droplet size on spray distribution and control efficacy of different fungicides against circular leaf spot of persimmon caused by Plurivorosphaerella nawae. Crop Protection, 130, 105072.
  86. Gebrehiwot, K. (2022). Chapter 3: Soil management for food security. Pp. 61–71. In Jhariya, M. K., Meena, R. S., Banerjee, A., & Meena, N. M. (Editors). Natural Resources Conservation and Advances for Sustainability. Elsevier.
  88. Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J., Gallart, M., & Escolà, A. (2014). Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors, 14(1), 691–708.
  90. Görlach, B. M., & Mühling, K. H. (2021). Phosphate foliar application increases biomass and P concentration in P deficient maize. Journal of Plant Nutrition and Soil Science, 184(3), 360–370.
  92. Görlach, B. M., Henningsen, J. N., Mackens, J. T., & Mühling, K. H. (2021a). Evaluation of maize growth following early season foliar p supply of various fertilizer formulations and in relation to nutritional status. Agronomy, 11(4), 727.
  94. Görlach, B. M., Sagervanshi, A., Henningsen, J. N., Pitann, B., & Mühling, K. H. (2021b). Uptake, subcellular distribution, and translocation of foliar-applied phosphorus: Short-term effects on ion relations in deficient young maize plants. Plant Physiology and Biochemistry, 166, 677–688.
  95. Grzebisz, W., Diatta, J., Barłóg, P., Biber, M., Potarzycki, J., Łukowiak, R., Przygocka-Cyna, K., & Szczepaniak, W. (2022). Soil fertility clock—crop rotation as a paradigm in nitrogen fertilizer productivity control. Plants, 11(21), 2841.
  97. Hanafi, A., Hindy, M., & Abdel Ghani, S. (2016). Effect of spray application techniques on spray deposits and residues of bifenthrin in peas under field conditions. Journal of Pesticide Science, 41(2), 49–54.
  99. Hasnain, M., Chen, J., Ahmed, N., Memon, S., Wang, L., Wang, Y., & Wang, P. (2020). The effects of fertilizer type and akrasipplication time on soil properties, plant traits, yield and quality of tomato. Sustainability, 12(21), 9065.
  101. Hemida, K. A., Eloufey, A. Z. A., Hassan, G. M., Rady, M. M., El-Sadek, A. N., & Abdelfattah, M. A. (2023). Integrative NPK soil and foliar application improves growth, yield, antioxidant, and nutritional status of Capsicum annuum L. in sandy soils under semi-arid condition. Journal of Plant Nutrition, 46(6), 1091-1107.
  103. Hu, Y., Zeeshan, M., Wang, G., Pan, Y., Liu, Y., & Zhou, X. (2023). Supplementary irrigation and varying nitrogen fertilizer rate mediate grain yield, soil-maize nitrogen accumulation and metabolism. Agricultural Water Management, 276, 108066.
  105. Hussein, H. T., & Judy, M. Q. (2019). Effect of the number of foliar spraying times with glutathione for different stages in some traits of growth and yield of corn (Zea mays L.). Plant Archives, 19(1), 287–294.
  106. Ishfaq, M., Kiran, A., ur Rehman, H., Farooq, M., Ijaz, N. H., Nadeem, F., Azeem, I., Li, X., & Wakeel, A. (2022). Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany, 200, 104909.
  107. Izydorczyk, G., Mikula, K., Skrzypczak, D., Witek-Krowiak, A., & Chojnacka, K. (2022). Granulation as the method of rational fertilizer application. Pp. 163–184). In Chojnacka, K. & Saeid, A. (Editors). Smart Agrochemicals for Sustainable Agriculture. Academic Press.
  108. Jain, V., & Abrol, Y. P. (2017). Plant Nitrogen Use Efficiency. Pp: 163–173. In Abrol Y. P., Adhya, T. K., Aneja, V. P., Raghuram, N., Pathak, H., Kulshrestha, U., Sharma, C., & Singh, B. (Editors). The Indian Nitrogen Assessment. Elsevier.
  110. Javanmard, A., Ashrafi, M., Morshedloo, M. R., Machiani, M. A., Rasouli, F., & Maggi, F. (2022). Optimizing phytochemical and physiological characteristics of balangu (Lallemantia iberica) by foliar application of chitosan nanoparticles and myco-root inoculation under water supply restrictions. Horticulturae, 8(8), 695.
  112. Jiang, Y., Yang, Z., Xu, X., Shen, D., Jiang, T., Xie, B., & Duan, J. (2023). Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy. Frontiers in Plant Science, 14, 1079703.
  114. Jurkow, R., Pokluda, R., Sękara, A., & Kalisz, A. (2020). Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biology, 20(1), 290.
  116. Kentelky, E., & Szekely-Varga, Z. (2021). Impact of foliar fertilization on growth, flowering, and corms production of five gladiolus varieties. Plants, 10(9), 1963.
  118. Komarek, A. M., & Msangi, S. (2019). Effect of changes in population density and crop productivity on farm households in Malawi. Agricultural Economics, 50(5), 615–628.
  120. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078.
  122. Krasilnikov, P., Taboada, M. A., & Amanullah. (2022). Fertilizer use, soil health and agricultural sustainability. Agriculture, 12(4), 462.
  123. Ladha, J. K., Jat, M. L., Stirling, C. M., Chakraborty, D., Pradhan, P., Krupnik, T. J., Sapkota, T. B., Pathak, H., Rana, D. S., Tesfaye, K., & Gerard, B. (2020). Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. In Advances in Agronomy Vol. 163, 39-116.
  125. Laskari, M., Menexes, G. C., Kalfas, I., Gatzolis, I., & Dordas, C. (2022). Effects of fertilization on morphological and physiological characteristics and environmental cost of maize (Zea mays L.). Sustainability, 14(14), 8866.
  127. LE Imakumbili, M. (2020). Making and applying foliar fertiliser and pesticide solutions.
  129. Li, J., Cui, H., Ma, Y., Xun, L., Li, Z., Yang, Z., & Lu, H. (2020). Orchard Spray Study: A Prediction Model of Droplet Deposition States on Leaf Surfaces. Agronomy, 10(5), 747.
  131. Li, N., Yang, Y., Wang, L., Zhou, C., Jing, J., Sun, X., & Tian, X. (2019). Combined effects of nitrogen and sulfur fertilization on maize growth, physiological traits, N and S uptake, and their diagnosis. Field Crops Research, 242, 107593.
  133. Li, Y., Gao, X., Tenuta, M., Gui, D., Li, X., & Zeng, F. (2021). Linking soil profile N2O concentration with surface flux in a cotton field under drip fertigation. Environmental Pollution, 285, 117458.
  135. Lichiheb, N., Bedos, C., Personne, E., Benoit, P., Bergheaud, V., Fanucci, O., Bouhlel, J., & Barriuso, E. (2015). Measuring leaf penetration and volatilization of chlorothalonil and epoxiconazole applied on wheat leaves in a laboratory-scale experiment. Journal of Environmental Quality, 44(6), 1782–1790.
  137. Liu, Q., Xu, H., & Yi, H. (2021). Impact of fertilizer on crop yield and C:N:P stoichiometry in arid and semi-arid soil. International Journal of Environmental Research and Public Health, 18(8), 4341.
  139. Maia, V. M., Pegoraro, R. F., Aspiazú, I., Oliveira, F. S., & Nobre, D. A. C. (2020). Diagnosis and management of nutrient constraints in pineapple. Pp. 739–760. In Srivastava, A. K. & Chengxiao Hu, C. (Editors). Fruit Crops Elsevier.
  140. Morari, F., Vellidis, G., & Gay, P. (2011). Fertilizers. In Encyclopedia of Environmental Health (pp. 727–737).
  142. Mosa, W. F. A., Abd EL-Megeed, N. A., Ali, M. M., Abada, H. S., Ali, H. M., Siddiqui, M. H., & Sas-Paszt, L. (2022). Preharvest Foliar applications of citric acid, gibberellic acid and humic acid improve growth and fruit quality of ‘le conte’ pear (Pyrus communis L.). Horticulturae, 8(6), 507.
  143. Mulyati, Baharuddin, A. B., & Tejowulan, R. S. (2021). Improving Maize (Zea mays L.) growth and yield by the application of inorganic and organic fertilizers plus. IOP Conference Series: Earth and Environmental Science, 712(1), 012027.
  145. Musiu, E. M., Qi, L., & Wu, Y. (2019). Spray deposition and distribution on the targets and losses to the ground as affected by application volume rate, airflow rate and target position. Crop Protection, 116, 170–180.
  147. Myrold, D. D. (2021). Transformations of nitrogen. Pp. 385–421. In Gentry, T. J., Fuhrmann, J. J., & Zuberer, D. A. (Editors). Principles and Applications of Soil Microbiology. Third edition, Elsevier.
  149. Nelson, K. A., & Meinhardt, C. G. (2011). Foliar boron and pyraclostrobin effects on corn yield. Agronomy Journal, 103(5), 1352–1358.
  150. Neto, J. G., Cunha, J. P. A. R. da, Almeida, V. V., & Alves, G. S. (2015). Spray deposition on coffee leaves from airblast sprayers with and without electrostatic charge. Bioscience Journal, 31(5), 1296–1303.
  152. Nuyttens, D., Baetens, K., De Schampheleire, M., & Sonck, B. (2007). Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering, 97(3), 333–345.
  154. Oliveira, S. L., Crusciol, C. A. C., Rodrigues, V. A., Galeriani, T. M., Portugal, J. R., Bossolani, J. W., Moretti, L. G., Calonego, J. C., & Cantarella, H. (2022). Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize. Frontiers in Plant Science, 13, 887682.
  156. Parent, L. E., Rozane, D. E., Deus, J. A. L. de, & Natale, W. (2020). Diagnosis of nutrient composition in fruit crops: Major developments. Pp. 145–156. In Srivastava, A. K., & Chengxiao Hu, C. (Editors). Fruit Crops Elsevier.
  158. Peirce, C. A. E., McBeath, T. M., Priest, C., & McLaughlin, M. J. (2019). The timing of application and inclusion of a surfactant are important for absorption and translocation of foliar phosphoric acid by wheat leaves. Frontiers in Plant Science, 10, 1532.
  159. Predoi, D., V. Ghita, R., Liliana Iconaru, S., Laura Cimpeanu, C., & Mariana Raita, S. (2020). Application of Nanotechnology Solutions in Plants Fertilization. In Shekhar Solankey, S., Akhtar, S., Isabel Luna Maldonado, A., Rodriguez-Fuentes, H., Antonio Vidales Contreras, J., & Mariana Márquez Reyes, J. (Eds.), Urban Horticulture—Necessity of the Future. IntechOpen.
  161. Rana, R., Siddiqui, Md., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D., Mahmud, N., & Islam, T. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7(10), 332.
  162. Rodolfi, M., Barbanti, L., Giordano, C., Rinaldi, M., Fabbri, A., Pretti, L., Casolari, R., Beghé, D., Petruccelli, R., & Ganino, T. (2021). The Effect of different organic foliar fertilization on physiological and chemical characters in hop (Humulus lupulus L., cv Cascade) leaves and cones. Applied Sciences, 11(15), 6778.
  164. Saadoun, S. F., & Al-juthery, H. W. A. (2019). Fertilizer use efficiency of nano fertilizers of micronutrients foliar application on Jerusalem artichoke. Al-Qadisiyah Journal For Agriculture Sciences, 9(1), 16–25.
  166. Saboor, A., Ali, M. A., Hussain, S., El Enshasy, H. A., Hussain, S., Ahmed, N., Gafur, A., Sayyed, R. Z., Fahad, S., Danish, S., & Datta, R. (2021). Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences, 28(11), 6339–6351.
  168. Salehi, M., Walthert, L., Zimmermann, S., Waldner, P., Schmitt, M., Schleppi, P., Liechti, K., Ahmadi, M., Zahedi Amiri, G., Brunner, I., & Thimonier, A. (2020). Leaf morphological traits and leaf nutrient concentrations of european beech across a water availability gradient in Switzerland. Frontiers in Forests and Global Change, 3, 19.
  170. Sapkota, M., Virk, S., & Rains, G. (2023). Spray deposition and quality assessment at varying ground speeds for an agricultural sprayer with and without a rate controller. AgriEngineering, 5(1), 506–519.
  172. Saquee, F. S., Diakite, S., Kavhiza, N. J., Pakina, E., & Zargar, M. (2023). The efficacy of micronutrient fertilizers on the yield formulation and quality of wheat grains. Agronomy, 13(2), 566.
  174. Schjoerring, J. K., Cakmak, I., & White, P. J. (2019). Plant nutrition and soil fertility: Synergies for acquiring global green growth and sustainable development. Plant and Soil, 434(1–2), 1–6.
  176. Schreel, J. D. M., & Steppe, K. (2020). Foliar water uptake in trees: negligible or necessary? Trends in Plant Science, 25(6), 590–603.
  177. Shahrajabian, M. H., Sun, W., & Cheng, Q. (2022). Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 26.
  179. Shaji, H., Chandran, V., & Mathew, L. (2021). Organic fertilizers as a route to controlled release of nutrients. Pp. 231–245. In Lewu, F. B., Volova, T., Thomas, S., & Rakhimol, K. R. (Editors). Controlled Release Fertilizers for Sustainable Agriculture .
  181. Shang, Y., Hasan, Md. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558.
  183. Sharma, S., Kaur, G., Singh, P., Alamri, S., Kumar, R., & Siddiqui, M. H. (2022). Nitrogen and potassium application effects on productivity, profitability and nutrient use efficiency of irrigated wheat (Triticum aestivum L.). PLOS ONE, 17(5), e0264210.
  184. Singh, V. K., Gautam, P., Nanda, G., Dhaliwal, S. S., Pramanick, B., Meena, S. S., Alsanie, W. F., Gaber, A., Sayed, S., & Hossain, A. (2021). Soil test based fertilizer application improves productivity, profitability and nutrient use efficiency of rice (Oryza sativa L.) under direct seeded condition. Agronomy, 11(9), 1756.
  186. Soussi, M., Chaibi, M. T., Buchholz, M., & Saghrouni, Z. (2022). Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy, 12(3), 626.
  188. Souza, H. A. de, Vieira, P. F. de M. J., Rozane, D. E., Sagrilo, E., Leite, L. F. C., & Ferreira, A. C. M. (2020). Critical levels and sufficiency ranges for leaf nutrient diagnosis by two methods in soybean grown in the Northeast of Brazil. Revista Brasileira de Ciência Do Solo, 44, e0190125.
  189. Spanoghe, P., De Schampheleire, M., Van der Meeren, P., & Steurbaut, W. (2007). Influence of agricultural adjuvants on droplet spectra. Pest Management Science, 63(1), 4–16.
  191. Stewart, Z. P., Paparozzi, E. T., Wortmann, C. S., Jha, P. K., & Shapiro, C. A. (2020). Foliar micronutrient application for high-yield maize. Agronomy, 10(12), 1946.
  193. Stewart, Z. P., Paparozzi, E. T., Wortmann, C. S., Jha, P. K., & Shapiro, C. A. (2021). Effect of foliar micronutrients (B, Mn, Fe, Zn) on maize grain yield, micronutrient recovery, uptake, and partitioning. Plants, 10(3), 528.
  195. Sun, H., Lei, C., Xu, J., & Li, R. (2021). Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials, 416, 125854.
  197. Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112.
  198. Vega, C., Chi, C.-J. E., Fernández, V., & Burkhardt, J. (2023). Nocturnal transpiration may be associated with foliar nutrient uptake. Plants, 12(3), 531.
  200. Venugopalan, V. K., Nath, R., Sengupta, K., Pal, A. K., Banerjee, S., Banerjee, P., Chandran, M. A. S., Roy, S., Sharma, L., Hossain, A., & Siddique, K. H. M. (2022). Foliar spray of micronutrients alleviates heat and moisture stress in lentil (Lens culinaris Medik) grown under rainfed field conditions. Frontiers in Plant Science, 13, 847743.
  202. Veresoglou, S. D., Barto, E. K., Menexes, G., & Rillig, M. C. (2013). Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathology, 62(5), 961-969.
  204. Wang, S., Tian, X., & Liu, Q. (2020). The effectiveness of foliar applications of zinc and biostimulants to increase zinc concentration and bioavailability of wheat grain. Agronomy, 10(2), 178.
  206. Warnock, R. E. (1970). Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation to phosphorus-induced zinc deficiency1. Soil Science Society of America Journal, 34(5), 765.
  208. Wierzbowska, J., Sienkiewicz, S., & Światły, A. (2022). Yield and nitrogen status of maize (Zea mays L.) fertilized with solution of urea—ammonium nitrate enriched with P, Mg or S. Agronomy, 12(9), 2099.
  210. Wilfret, G. J. (1992). Gladiolus. Pp. 143–157. In Larson, R. A. (editor). Introduction to Floriculture. Second edition, Academic Press.
  211. Xie, R., Zhao, J., Lu, L., Brown, P., Guo, J., & Tian, S. (2020). Penetration of foliar-applied Zn and its impact on apple plant nutrition status: In vivo evaluation by synchrotron-based X-ray fluorescence microscopy. Horticulture Research, 7(1), 147.
  213. Yuan, Z., Long, W., Liang, T., Zhu, M., Zhu, A., Luo, X., Fu, L., Hu, Z., Zhu, R., & Wu, X. (2023. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice. Plant and Soil, 486, 87–101.
  214. Zhang, S., Zheng, Q., Noll, L., Hu, Y., & Wanek, W. (2019). Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil Biology and Biochemistry, 135, 304–315.
  215. Zhang, W., Xue, Y.-F., Chen, X.-P., Zhang, F.-S., & Zou, C.-Q. (2020). Zinc nutrition for high productivity and human health in intensive production of wheat. In Advances in Agronomy 163, 179–217.