Main Article Content

Abstract

Using of foliar fertilizer application is an important issue in many crops plantation in different countries. Various studies have been conducted on this method, especially with fruits and horticulture. Few studies were performed on essential crops such as maize compared to the orchards. Concerning crops, most of these studies were performed using foliar spraying with phosphorus, and potassium, and a few attempts were carried out with foliar fertilizer during the season at different concentrations starting from the first stage of the plant. The foliar application may be sprayed with a suitable concentrate depending on the type of crop planted, growth stage, leaves age, and physicochemical properties of the sprayed liquid. As reported in the current literature, there are previous studies on this application with insufficient knowledge of mechanisms and factors governing the nutrient uptake by leaves that still need to be improved. The insufficient information about the effect of foliar fertilizer at different application rates is one of the reasons that the study focused on it, which was probably the leading cause of sometimes controversial effects with foliar fertilizers being reported. Most previous studies revealed that is necessary to apply foliar fertilizer on the plant leaves at a proper concentration and application rate compatible with the age of the crop applied. The results also indicated that a suitable concentration of foliar fertilizer no doubt leads to improved fertilizer effectiveness and can even increase plant growth activity, especially when spraying with modern technology. For an optimum both of the crop vegetative growth and yield response to foliar fertilization, it is possible to diagnose the optimum growth stage of the plant and leaf age for the starting of foliar fertilizer application related to metrological conditions such as the air temperature, and relative humidity at the time of spraying. It is necessary to recommend the crop growth stage before foliar application at a known application rate and concentration to a crop to achieve maximum efficiency at low cost as possible.

Keywords

Application method Spray droplets characteristics Sprayer setup

Article Details

How to Cite
Alheidary, M. H. R. . (2023). Spraying Technology and Foliar Application Result in a Smooth Layer of the Spray: a Literature Review. Basrah Journal of Agricultural Sciences, 36(2), 334–374. https://doi.org/10.37077/25200860.2023.36.2.25

References

  1. Abboud, R. L., & Al-Assaf, M. A. (2020). Effect of spraying date of boron on vegetative growth and yield of cotton plant (Gossypium hirsutum L.) Lashata variety. IOP Conference Series: Earth and Environmental Science, 553(1), 012035.
  2. https://doi.org/10.1088/1755-1315/553/1/012035
  3. Adamec, L. (2002). Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake. New Phytologist, 155(1), 89–100. https://doi.org/10.1046/j.1469-8137.2002.00441.x
  4. Adeoluwa, O. O., Mutengwa, C. S., Chiduza, C., & Tandzi, N. L. (2022). Nitrogen use efficiency of quality protein maize (Zea mays L.) genotypes. Agronomy, 12(5), 1118.
  5. https://doi.org/10.3390/agronomy12051118
  6. Al Heidary, M., Douzals, J. P., Sinfort, C., & Vallet, A. (2014). Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review. Crop Protection, 63, 120–130.
  7. https://doi.org/10.1016/j.cropro.2014.05.006
  8. Alberto, L., Luz, M. S. da, Santos, K. G. dos, & Okura, M. H. (2022). Enhanced solubility of foliar fertilizer via spray dryer: Process analysis and productivity optimization by response surface methodology. Ciência e Agrotecnologia, 46, e002422.
  9. https://doi.org/10.1590/1413-7054202246002422
  10. Alheidary, M. H., Al-shaheen, M. S., & Al abdullah, S. A. (2020). The role of sprayer`s characteristics and foliar spraying for improving the maize growth and yield. Basrah Journal of Agricultural Sciences., 33(2), 182195.
  11. https://doi.org/10.37077/25200860.2020.33.2.16
  12. Alidoost Dafsari, R., Yu, S., Choi, Y., & Lee, J. (2021). Effect of geometrical parameters of air-induction nozzles on droplet characteristics and behaviour. Biosystems Engineering, 209, 14–29.
  13. https://doi.org/10.1016/j.biosystemseng.2021.06.013
  14. Al-Maliky, A. W. A., Jerry, A. N., & Obead, F. I. (2019). The Effects of foliar spraying of folic acid and cysteine on growth, chemical composition of leaves and green yield of faba bean (Vicia faba L.). Basrah Journal of Agricultural Sciences, 32(2), 223–229. https://doi.org/10.37077/25200860.2019.212
  15. Alshaal, T., & El-Ramady, H. (2017). Foliar application: From plant nutrition to biofortification. Environment, Biodiversity and Soil Security, 1(2017), 71-83.
  16. https://doi.org/10.21608/jenvbs.2017.1089.1006
  17. Alzamel, N. M., Taha, E. M. M., Bakr, A. A. A., & Loutfy, N. (2022). Effect of organic and inorganic fertilizers on soil properties, growth yield, and physiochemical properties of sunflower seeds and oils. Sustainability, 14(19), 12928.
  18. https://doi.org/10.3390/su141912928
  19. Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of northeast Thailand: A review. Agronomy, 10(8), 1061.
  20. https://doi.org/10.3390/agronomy10081061
  21. Asibi, A. E., Chai, Q., & A. Coulter, J. (2019). Mechanisms of nitrogen use in maize. Agronomy, 9(12), 775. https://doi.org/10.3390/agronomy9120775
  22. Aveyard, B. (2019). Wetting. Pp. 427–464. In Aveyard, B. (Editor). Surfactants. Oxford University Press. https://doi.org/10.1093/oso/9780198828600.003.0016
  23. Baales, J., Zeisler-Diehl, V. V., Malkowsky, Y., & Schreiber, L. (2022). Interaction of surfactants with barley leaf surfaces: Time-dependent recovery of contact angles is due to foliar uptake of surfactants. Planta, 255(1), 1.
  24. https://doi.org/10.1007/s00425-021-03785-z
  25. Barłóg, P., Grzebisz, W., & Łukowiak, R. (2022). Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants, 11(14), 1855.
  26. https://doi.org/10.3390/plants11141855
  27. Begizew, G. (2021). Agricultural production system in arid and semi-arid regions. International Journal of Agricultural Science and Food Technology, 7(2), 234–244.
  28. https://doi.org/10.17352/2455-815X.000113
  29. Beig, B., Niazi, M. B. K., Sher, F., Jahan, Z., Malik, U. S., Khan, M. D., Américo-Pinheiro, J. H. P., & Vo, D.-V. N. (2022). Nanotechnology-based controlled release of sustainable fertilizers. A review. Environmental Chemistry Letters, 20(4), 2709–2726.
  30. https://doi.org/10.1007/s10311-022-01409-w
  31. Bhattacharya, A. (2019). Nitrogen-use efficiency under changing climatic conditions. Pp, 181–240. In Bhattacharya, A. (Editor). Changing climate and resource use efficiency in plants. Elsevier.
  32. https://doi.org/10.1016/B978-0-12-816209-5.00004-0
  33. Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Applied Sciences, 3(4), 518.
  34. https://doi.org/10.1007/s42452-021-04521-8
  35. Bojtor, C., Mousavi, S. M. N., Illés, Á., Golzardi, F., Széles, A., Szabó, A., Nagy, J., & Marton, C. L. (2022). Nutrient composition analysis of maize hybrids affected by different nitrogen fertilisation systems. Plants, 11(12), 1593.
  36. https://doi.org/10.3390/plants11121593
  37. Carvalho, F. K., Antuniassi, U. R., Chechetto, R. G., Mota, A. A. B., de Jesus, M. G., & de Carvalho, L. R. (2017). Viscosity, surface tension and droplet size of sprays of different formulations of insecticides and fungicides. Crop Protection, 101, 19–23.
  38. https://doi.org/10.1016/j.cropro.2017.07.014
  39. Chen, M., Zhu, X., Zhang, Y., Du, Z., Chen, X., Kong, X., Sun, W., & Chen, C. (2020). Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Scientific Reports, 10(1), 6696.
  40. https://doi.org/10.1038/s41598-020-63683-4
  41. Ciampitti, I. A., & Vyn, T. J. (2011). A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research, 121(1), 2–18.
  42. https://doi.org/10.1016/j.fcr.2010.10.009
  43. Corriveau, J., Gaudreau, L., Caron, J., Jenni, S., & Gosselin, A. (2012). Testing irrigation, day/night foliar spraying, foliar calcium and growth inhibitor as possible cultural practices to reduce tipburn in lettuce. Canadian Journal of Plant Science, 92(5), 889–899. https://doi.org/10.4141/cjps2011-242
  44. Dass, A., Rajanna, G. A., Babu, S., Lal, S. K., Choudhary, A. K., Singh, R., Rathore, S. S., Kaur, R., Dhar, S., Singh, T., Raj, R., Shekhawat, K., Singh, C., & Kumar, B. (2022). Foliar application of macro- and micronutrients improves the productivity, economic returns, and resource-use efficiency of soybean in a semiarid climate. Sustainability, 14(10), 5825.
  45. https://doi.org/10.3390/su14105825
  46. de Oliveira, R. B., Bonadio Precipito, L. M., Gandolfo, M. A., de Oliveira, J. V., & Lucio, F. R. (2019). Effect of droplet size and leaf surface on retention of 2,4-D formulations. Crop Protection, 119, 97–101.
  47. https://doi.org/10.1016/j.cropro.2019.01.015
  48. Dekeyser, D., Foqué, D., Duga, A. T., Verboven, P., Hendrickx, N., & Nuyttens, D. (2014). Spray deposition assessment using different application techniques in artificial orchard trees. Crop Protection, 64, 187–197.
  49. https://doi.org/10.1016/j.cropro.2014.06.008
  50. Dengeru, Y., Ramasamy, K., Allimuthu, S., Balakrishnan, S., Kumar, A. P. M., Kannan, B., & Karuppasami, K. M. (2022). Study on spray deposition and drift characteristics of uav agricultural sprayer for application of insecticide in redgram crop (Cajanus cajan L. Millsp.). Agronomy, 12(12), 3196.
  51. https://doi.org/10.3390/agronomy12123196
  52. Ebel, R. (2020). Yield response of a polycropping system with maize to fermented foliar fertilizers. CIENCIA ergo sum, 27(3), e98. https://doi.org/10.30878/ces.v27n3a8
  53. Eibner, R. (1986). Foliar Fertilization—importance and prospects in crop production. Pp. 3–13. In Alexander, A. (Editor). Foliar Fertilization. Springer Dordrecht. 488pp.
  54. https://doi.org/10.1007/978-94-009-4386-5_1
  55. Elbasiouny, H., El-Ramady, H., Elbehiry, F., Rajput, V. D., Minkina, T., & Mandzhieva, S. (2022). Plant nutrition under climate change and soil carbon sequestration. Sustainability, 14(2), 914.
  56. https://doi.org/10.3390/su14020914
  57. Faber, A., & Fotyma, M. (1986). The Efficiency of Foliar Fertilization of Spring Barley. Pp. 426–430. In Alexander, A. (Editor). Foliar Fertilization. Springer Dordrecht. 488pp.
  58. https://doi.org/10.1007/978-94-009-4386-5_31
  59. Fageria, N. K., & Baligar, V. C. (2005). Nutrient availability. Pp. 63–71. In Hillel, D. (Editor). Encyclopedia of Soils in the Environment. Academic Press.
  60. https://doi.org/10.1016/B0-12-348530-4/00236-8
  61. Fageria, N. K., Filho, M. P. B., Moreira, A., & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044–1064.
  62. https://doi.org/10.1080/01904160902872826
  63. Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science, 8, 1147.
  64. https://doi.org/10.3389/fpls.2017.01147
  65. Failla, S., & Romano, E. (2020). Effect of spray application technique on spray deposition and losses in a greenhouse vegetable nursery. Sustainability, 12(17), 7052.
  66. https://doi.org/10.3390/su12177052
  67. Falls, J. H., & Siegel, S. A. (2005). Fertilizers. Pp. 1–8. In Encyclopedia of Analytical Science. Elsevier.
  68. https://doi.org/10.1016/B0-12-369397-7/00150-3
  69. Farooq, M., Hussain, M., Wakeel, A., & Siddique, K. H. M. (2015). Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agronomy for Sustainable Development, 35(2), 461–481.
  70. https://doi.org/10.1007/s13593-015-0287-0
  71. Fernández, V., & Brown, P. H. (2013). From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Frontiers in Plant Science, 4. 289.
  72. https://doi.org/10.3389/fpls.2013.00289
  73. Fernández, V., & Eichert, T. (2009). Uptake of hydrophilic solutes through plant leaves: Current state of knowledge and perspectives of foliar fertilization. Critical Reviews in Plant Sciences, 28(1–2), 36–68.
  74. https://doi.org/10.1080/07352680902743069
  75. Ferrari, M., Dal Cortivo, C., Panozzo, A., Barion, G., Visioli, G., Giannelli, G., & Vamerali, T. (2021). Comparing soil vs. foliar nitrogen supply of the whole fertilizer dose in common wheat. Agronomy, 11(11), 2138.
  76. https://doi.org/10.3390/agronomy11112138
  77. Finch, H. J. S., Samuel, A. M., & Lane, G. P. F. (2014). Fertilisers and manures. Pp. 63–91. In Finch, H. J. S., Samuel, A. M., & Lane, G. P. F. (Editors). Lockhart & Wiseman’s Crop Husbandry Including Grassland. Nine edition, Woodhead Publishing.
  78. https://doi.org/10.1533/9781782423928.1.63
  79. Foqué, D., & Nuyttens, D. (2011). Effects of nozzle type and spray angle on spray deposition in ivy pot plants. Pest Management Science, 67(2), 199–208.
  80. https://doi.org/10.1002/ps.2051
  81. Fornasiero, D., Mori, N., Tirello, P., Pozzebon, A., Duso, C., Tescari, E., Bradascio, R., & Otto, S. (2017). Effect of spray drift reduction techniques on pests and predatory mites in orchards and vineyards. Crop Protection, 98, 283–292.
  82. https://doi.org/10.1016/j.cropro.2017.04.010
  83. Fu, W., Song, L., Liu, T., & Lin, Q. (2019). Experimental study of spray characteristics of biodiesel blending with diethyl carbonate in a common rail injection system. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 233(2), 249–262. https://doi.org/10.1177/0954407017740792
  84. Garcerá, C., Vicent, A., & Chueca, P. (2020). Effect of spray volume, application timing and droplet size on spray distribution and control efficacy of different fungicides against circular leaf spot of persimmon caused by Plurivorosphaerella nawae. Crop Protection, 130, 105072.
  85. https://doi.org/10.1016/j.cropro.2019.105072
  86. Gebrehiwot, K. (2022). Chapter 3: Soil management for food security. Pp. 61–71. In Jhariya, M. K., Meena, R. S., Banerjee, A., & Meena, N. M. (Editors). Natural Resources Conservation and Advances for Sustainability. Elsevier.
  87. https://doi.org/10.1016/B978-0-12-822976-7.00029-6
  88. Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J., Gallart, M., & Escolà, A. (2014). Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors, 14(1), 691–708.
  89. https://doi.org/10.3390/s140100691
  90. Görlach, B. M., & Mühling, K. H. (2021). Phosphate foliar application increases biomass and P concentration in P deficient maize. Journal of Plant Nutrition and Soil Science, 184(3), 360–370.
  91. https://doi.org/10.1002/jpln.202000460
  92. Görlach, B. M., Henningsen, J. N., Mackens, J. T., & Mühling, K. H. (2021a). Evaluation of maize growth following early season foliar p supply of various fertilizer formulations and in relation to nutritional status. Agronomy, 11(4), 727.
  93. https://doi.org/10.3390/agronomy11040727
  94. Görlach, B. M., Sagervanshi, A., Henningsen, J. N., Pitann, B., & Mühling, K. H. (2021b). Uptake, subcellular distribution, and translocation of foliar-applied phosphorus: Short-term effects on ion relations in deficient young maize plants. Plant Physiology and Biochemistry, 166, 677–688. https://doi.org/10.1016/j.plaphy.2021.06.028
  95. Grzebisz, W., Diatta, J., Barłóg, P., Biber, M., Potarzycki, J., Łukowiak, R., Przygocka-Cyna, K., & Szczepaniak, W. (2022). Soil fertility clock—crop rotation as a paradigm in nitrogen fertilizer productivity control. Plants, 11(21), 2841.
  96. https://doi.org/10.3390/plants11212841
  97. Hanafi, A., Hindy, M., & Abdel Ghani, S. (2016). Effect of spray application techniques on spray deposits and residues of bifenthrin in peas under field conditions. Journal of Pesticide Science, 41(2), 49–54.
  98. https://doi.org/10.1584/jpestics.D15-071
  99. Hasnain, M., Chen, J., Ahmed, N., Memon, S., Wang, L., Wang, Y., & Wang, P. (2020). The effects of fertilizer type and akrasipplication time on soil properties, plant traits, yield and quality of tomato. Sustainability, 12(21), 9065.
  100. https://doi.org/10.3390/su12219065
  101. Hemida, K. A., Eloufey, A. Z. A., Hassan, G. M., Rady, M. M., El-Sadek, A. N., & Abdelfattah, M. A. (2023). Integrative NPK soil and foliar application improves growth, yield, antioxidant, and nutritional status of Capsicum annuum L. in sandy soils under semi-arid condition. Journal of Plant Nutrition, 46(6), 1091-1107.
  102. https://doi.org/10.1080/01904167.2022.2046060
  103. Hu, Y., Zeeshan, M., Wang, G., Pan, Y., Liu, Y., & Zhou, X. (2023). Supplementary irrigation and varying nitrogen fertilizer rate mediate grain yield, soil-maize nitrogen accumulation and metabolism. Agricultural Water Management, 276, 108066.
  104. https://doi.org/10.1016/j.agwat.2022.108066
  105. Hussein, H. T., & Judy, M. Q. (2019). Effect of the number of foliar spraying times with glutathione for different stages in some traits of growth and yield of corn (Zea mays L.). Plant Archives, 19(1), 287–294.
  106. Ishfaq, M., Kiran, A., ur Rehman, H., Farooq, M., Ijaz, N. H., Nadeem, F., Azeem, I., Li, X., & Wakeel, A. (2022). Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany, 200, 104909. https://doi.org/10.1016/j.envexpbot.2022.104909
  107. Izydorczyk, G., Mikula, K., Skrzypczak, D., Witek-Krowiak, A., & Chojnacka, K. (2022). Granulation as the method of rational fertilizer application. Pp. 163–184). In Chojnacka, K. & Saeid, A. (Editors). Smart Agrochemicals for Sustainable Agriculture. Academic Press. https://doi.org/10.1016/B978-0-12-817036-6.00003-0
  108. Jain, V., & Abrol, Y. P. (2017). Plant Nitrogen Use Efficiency. Pp: 163–173. In Abrol Y. P., Adhya, T. K., Aneja, V. P., Raghuram, N., Pathak, H., Kulshrestha, U., Sharma, C., & Singh, B. (Editors). The Indian Nitrogen Assessment. Elsevier.
  109. https://doi.org/10.1016/B978-0-12-811836-8.00011-2
  110. Javanmard, A., Ashrafi, M., Morshedloo, M. R., Machiani, M. A., Rasouli, F., & Maggi, F. (2022). Optimizing phytochemical and physiological characteristics of balangu (Lallemantia iberica) by foliar application of chitosan nanoparticles and myco-root inoculation under water supply restrictions. Horticulturae, 8(8), 695.
  111. https://doi.org/10.3390/horticulturae8080695
  112. Jiang, Y., Yang, Z., Xu, X., Shen, D., Jiang, T., Xie, B., & Duan, J. (2023). Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy. Frontiers in Plant Science, 14, 1079703.
  113. https://doi.org/10.3389/fpls.2023.1079703
  114. Jurkow, R., Pokluda, R., Sękara, A., & Kalisz, A. (2020). Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biology, 20(1), 290.
  115. https://doi.org/10.1186/s12870-020-02490-5
  116. Kentelky, E., & Szekely-Varga, Z. (2021). Impact of foliar fertilization on growth, flowering, and corms production of five gladiolus varieties. Plants, 10(9), 1963.
  117. https://doi.org/10.3390/plants10091963
  118. Komarek, A. M., & Msangi, S. (2019). Effect of changes in population density and crop productivity on farm households in Malawi. Agricultural Economics, 50(5), 615–628.
  119. https://doi.org/10.1111/agec.12513
  120. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078.
  121. https://doi.org/10.1016/j.envint.2019.105078
  122. Krasilnikov, P., Taboada, M. A., & Amanullah. (2022). Fertilizer use, soil health and agricultural sustainability. Agriculture, 12(4), 462. https://doi.org/10.3390/agriculture12040462
  123. Ladha, J. K., Jat, M. L., Stirling, C. M., Chakraborty, D., Pradhan, P., Krupnik, T. J., Sapkota, T. B., Pathak, H., Rana, D. S., Tesfaye, K., & Gerard, B. (2020). Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. In Advances in Agronomy Vol. 163, 39-116.
  124. https://doi.org/10.1016/bs.agron.2020.05.006
  125. Laskari, M., Menexes, G. C., Kalfas, I., Gatzolis, I., & Dordas, C. (2022). Effects of fertilization on morphological and physiological characteristics and environmental cost of maize (Zea mays L.). Sustainability, 14(14), 8866.
  126. https://doi.org/10.3390/su14148866
  127. LE Imakumbili, M. (2020). Making and applying foliar fertiliser and pesticide solutions.
  128. https://doi.org/10.17504/protocols.io.bbswinfe
  129. Li, J., Cui, H., Ma, Y., Xun, L., Li, Z., Yang, Z., & Lu, H. (2020). Orchard Spray Study: A Prediction Model of Droplet Deposition States on Leaf Surfaces. Agronomy, 10(5), 747.
  130. https://doi.org/10.3390/agronomy10050747
  131. Li, N., Yang, Y., Wang, L., Zhou, C., Jing, J., Sun, X., & Tian, X. (2019). Combined effects of nitrogen and sulfur fertilization on maize growth, physiological traits, N and S uptake, and their diagnosis. Field Crops Research, 242, 107593.
  132. https://doi.org/10.1016/j.fcr.2019.107593
  133. Li, Y., Gao, X., Tenuta, M., Gui, D., Li, X., & Zeng, F. (2021). Linking soil profile N2O concentration with surface flux in a cotton field under drip fertigation. Environmental Pollution, 285, 117458.
  134. https://doi.org/10.1016/j.envpol.2021.117458
  135. Lichiheb, N., Bedos, C., Personne, E., Benoit, P., Bergheaud, V., Fanucci, O., Bouhlel, J., & Barriuso, E. (2015). Measuring leaf penetration and volatilization of chlorothalonil and epoxiconazole applied on wheat leaves in a laboratory-scale experiment. Journal of Environmental Quality, 44(6), 1782–1790.
  136. https://doi.org/10.2134/jeq2015.03.0165
  137. Liu, Q., Xu, H., & Yi, H. (2021). Impact of fertilizer on crop yield and C:N:P stoichiometry in arid and semi-arid soil. International Journal of Environmental Research and Public Health, 18(8), 4341.
  138. https://doi.org/10.3390/ijerph18084341
  139. Maia, V. M., Pegoraro, R. F., Aspiazú, I., Oliveira, F. S., & Nobre, D. A. C. (2020). Diagnosis and management of nutrient constraints in pineapple. Pp. 739–760. In Srivastava, A. K. & Chengxiao Hu, C. (Editors). Fruit Crops Elsevier. https://doi.org/10.1016/B978-0-12-818732-6.00050-2
  140. Morari, F., Vellidis, G., & Gay, P. (2011). Fertilizers. In Encyclopedia of Environmental Health (pp. 727–737).
  141. https://doi.org/10.1016/B978-0-444-52272-6.00464-5
  142. Mosa, W. F. A., Abd EL-Megeed, N. A., Ali, M. M., Abada, H. S., Ali, H. M., Siddiqui, M. H., & Sas-Paszt, L. (2022). Preharvest Foliar applications of citric acid, gibberellic acid and humic acid improve growth and fruit quality of ‘le conte’ pear (Pyrus communis L.). Horticulturae, 8(6), 507. https://doi.org/10.3390/horticulturae8060507
  143. Mulyati, Baharuddin, A. B., & Tejowulan, R. S. (2021). Improving Maize (Zea mays L.) growth and yield by the application of inorganic and organic fertilizers plus. IOP Conference Series: Earth and Environmental Science, 712(1), 012027.
  144. https://doi.org/10.1088/1755-1315/712/1/012027
  145. Musiu, E. M., Qi, L., & Wu, Y. (2019). Spray deposition and distribution on the targets and losses to the ground as affected by application volume rate, airflow rate and target position. Crop Protection, 116, 170–180.
  146. https://doi.org/10.1016/j.cropro.2018.10.019
  147. Myrold, D. D. (2021). Transformations of nitrogen. Pp. 385–421. In Gentry, T. J., Fuhrmann, J. J., & Zuberer, D. A. (Editors). Principles and Applications of Soil Microbiology. Third edition, Elsevier.
  148. https://doi.org/10.1016/B978-0-12-820202-9.00015-0
  149. Nelson, K. A., & Meinhardt, C. G. (2011). Foliar boron and pyraclostrobin effects on corn yield. Agronomy Journal, 103(5), 1352–1358. https://doi.org/10.2134/agronj2011.0090
  150. Neto, J. G., Cunha, J. P. A. R. da, Almeida, V. V., & Alves, G. S. (2015). Spray deposition on coffee leaves from airblast sprayers with and without electrostatic charge. Bioscience Journal, 31(5), 1296–1303.
  151. https://doi.org/10.14393/BJ-v31n5a2015-26876
  152. Nuyttens, D., Baetens, K., De Schampheleire, M., & Sonck, B. (2007). Effect of nozzle type, size and pressure on spray droplet characteristics. Biosystems Engineering, 97(3), 333–345.
  153. https://doi.org/10.1016/j.biosystemseng.2007.03.001
  154. Oliveira, S. L., Crusciol, C. A. C., Rodrigues, V. A., Galeriani, T. M., Portugal, J. R., Bossolani, J. W., Moretti, L. G., Calonego, J. C., & Cantarella, H. (2022). Molybdenum foliar fertilization improves photosynthetic metabolism and grain yields of field-grown soybean and maize. Frontiers in Plant Science, 13, 887682.
  155. https://doi.org/10.3389/fpls.2022.887682
  156. Parent, L. E., Rozane, D. E., Deus, J. A. L. de, & Natale, W. (2020). Diagnosis of nutrient composition in fruit crops: Major developments. Pp. 145–156. In Srivastava, A. K., & Chengxiao Hu, C. (Editors). Fruit Crops Elsevier.
  157. https://doi.org/10.1016/B978-0-12-818732-6.00012-5
  158. Peirce, C. A. E., McBeath, T. M., Priest, C., & McLaughlin, M. J. (2019). The timing of application and inclusion of a surfactant are important for absorption and translocation of foliar phosphoric acid by wheat leaves. Frontiers in Plant Science, 10, 1532. https://doi.org/10.3389/fpls.2019.01532
  159. Predoi, D., V. Ghita, R., Liliana Iconaru, S., Laura Cimpeanu, C., & Mariana Raita, S. (2020). Application of Nanotechnology Solutions in Plants Fertilization. In Shekhar Solankey, S., Akhtar, S., Isabel Luna Maldonado, A., Rodriguez-Fuentes, H., Antonio Vidales Contreras, J., & Mariana Márquez Reyes, J. (Eds.), Urban Horticulture—Necessity of the Future. IntechOpen.
  160. https://doi.org/10.5772/intechopen.91240
  161. Rana, R., Siddiqui, Md., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D., Mahmud, N., & Islam, T. (2021). Prospects of nanotechnology in improving the productivity and quality of horticultural crops. Horticulturae, 7(10), 332. https://doi.org/10.3390/horticulturae7100332
  162. Rodolfi, M., Barbanti, L., Giordano, C., Rinaldi, M., Fabbri, A., Pretti, L., Casolari, R., Beghé, D., Petruccelli, R., & Ganino, T. (2021). The Effect of different organic foliar fertilization on physiological and chemical characters in hop (Humulus lupulus L., cv Cascade) leaves and cones. Applied Sciences, 11(15), 6778.
  163. https://doi.org/10.3390/app11156778
  164. Saadoun, S. F., & Al-juthery, H. W. A. (2019). Fertilizer use efficiency of nano fertilizers of micronutrients foliar application on Jerusalem artichoke. Al-Qadisiyah Journal For Agriculture Sciences, 9(1), 16–25.
  165. https://doi.org/10.33794/qjas.2019.162661
  166. Saboor, A., Ali, M. A., Hussain, S., El Enshasy, H. A., Hussain, S., Ahmed, N., Gafur, A., Sayyed, R. Z., Fahad, S., Danish, S., & Datta, R. (2021). Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences, 28(11), 6339–6351.
  167. https://doi.org/10.1016/j.sjbs.2021.06.096
  168. Salehi, M., Walthert, L., Zimmermann, S., Waldner, P., Schmitt, M., Schleppi, P., Liechti, K., Ahmadi, M., Zahedi Amiri, G., Brunner, I., & Thimonier, A. (2020). Leaf morphological traits and leaf nutrient concentrations of european beech across a water availability gradient in Switzerland. Frontiers in Forests and Global Change, 3, 19.
  169. https://doi.org/10.3389/ffgc.2020.00019
  170. Sapkota, M., Virk, S., & Rains, G. (2023). Spray deposition and quality assessment at varying ground speeds for an agricultural sprayer with and without a rate controller. AgriEngineering, 5(1), 506–519.
  171. https://doi.org/10.3390/agriengineering5010033
  172. Saquee, F. S., Diakite, S., Kavhiza, N. J., Pakina, E., & Zargar, M. (2023). The efficacy of micronutrient fertilizers on the yield formulation and quality of wheat grains. Agronomy, 13(2), 566.
  173. https://doi.org/10.3390/agronomy13020566
  174. Schjoerring, J. K., Cakmak, I., & White, P. J. (2019). Plant nutrition and soil fertility: Synergies for acquiring global green growth and sustainable development. Plant and Soil, 434(1–2), 1–6.
  175. https://doi.org/10.1007/s11104-018-03898-7
  176. Schreel, J. D. M., & Steppe, K. (2020). Foliar water uptake in trees: negligible or necessary? Trends in Plant Science, 25(6), 590–603. https://doi.org/10.1016/j.tplants.2020.01.003
  177. Shahrajabian, M. H., Sun, W., & Cheng, Q. (2022). Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 26.
  178. https://doi.org/10.1186/s43088-022-00210-6
  179. Shaji, H., Chandran, V., & Mathew, L. (2021). Organic fertilizers as a route to controlled release of nutrients. Pp. 231–245. In Lewu, F. B., Volova, T., Thomas, S., & Rakhimol, K. R. (Editors). Controlled Release Fertilizers for Sustainable Agriculture .
  180. https://doi.org/10.1016/B978-0-12-819555-0.00013-3
  181. Shang, Y., Hasan, Md. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558.
  182. https://doi.org/10.3390/molecules24142558
  183. Sharma, S., Kaur, G., Singh, P., Alamri, S., Kumar, R., & Siddiqui, M. H. (2022). Nitrogen and potassium application effects on productivity, profitability and nutrient use efficiency of irrigated wheat (Triticum aestivum L.). PLOS ONE, 17(5), e0264210. https://doi.org/10.1371/journal.pone.0264210
  184. Singh, V. K., Gautam, P., Nanda, G., Dhaliwal, S. S., Pramanick, B., Meena, S. S., Alsanie, W. F., Gaber, A., Sayed, S., & Hossain, A. (2021). Soil test based fertilizer application improves productivity, profitability and nutrient use efficiency of rice (Oryza sativa L.) under direct seeded condition. Agronomy, 11(9), 1756.
  185. https://doi.org/10.3390/agronomy11091756
  186. Soussi, M., Chaibi, M. T., Buchholz, M., & Saghrouni, Z. (2022). Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy, 12(3), 626.
  187. https://doi.org/10.3390/agronomy12030626
  188. Souza, H. A. de, Vieira, P. F. de M. J., Rozane, D. E., Sagrilo, E., Leite, L. F. C., & Ferreira, A. C. M. (2020). Critical levels and sufficiency ranges for leaf nutrient diagnosis by two methods in soybean grown in the Northeast of Brazil. Revista Brasileira de Ciência Do Solo, 44, e0190125. https://doi.org/10.36783/18069657rbcs20190125
  189. Spanoghe, P., De Schampheleire, M., Van der Meeren, P., & Steurbaut, W. (2007). Influence of agricultural adjuvants on droplet spectra. Pest Management Science, 63(1), 4–16.
  190. https://doi.org/10.1002/ps.1321
  191. Stewart, Z. P., Paparozzi, E. T., Wortmann, C. S., Jha, P. K., & Shapiro, C. A. (2020). Foliar micronutrient application for high-yield maize. Agronomy, 10(12), 1946.
  192. https://doi.org/10.3390/agronomy10121946
  193. Stewart, Z. P., Paparozzi, E. T., Wortmann, C. S., Jha, P. K., & Shapiro, C. A. (2021). Effect of foliar micronutrients (B, Mn, Fe, Zn) on maize grain yield, micronutrient recovery, uptake, and partitioning. Plants, 10(3), 528.
  194. https://doi.org/10.3390/plants10030528
  195. Sun, H., Lei, C., Xu, J., & Li, R. (2021). Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials, 416, 125854.
  196. https://doi.org/10.1016/j.jhazmat.2021.125854
  197. Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112
  198. Vega, C., Chi, C.-J. E., Fernández, V., & Burkhardt, J. (2023). Nocturnal transpiration may be associated with foliar nutrient uptake. Plants, 12(3), 531.
  199. https://doi.org/10.3390/plants12030531
  200. Venugopalan, V. K., Nath, R., Sengupta, K., Pal, A. K., Banerjee, S., Banerjee, P., Chandran, M. A. S., Roy, S., Sharma, L., Hossain, A., & Siddique, K. H. M. (2022). Foliar spray of micronutrients alleviates heat and moisture stress in lentil (Lens culinaris Medik) grown under rainfed field conditions. Frontiers in Plant Science, 13, 847743.
  201. https://doi.org/10.3389/fpls.2022.847743
  202. Veresoglou, S. D., Barto, E. K., Menexes, G., & Rillig, M. C. (2013). Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathology, 62(5), 961-969.
  203. https://doi.org/10.1111/ppa.12014
  204. Wang, S., Tian, X., & Liu, Q. (2020). The effectiveness of foliar applications of zinc and biostimulants to increase zinc concentration and bioavailability of wheat grain. Agronomy, 10(2), 178.
  205. https://doi.org/10.3390/agronomy10020178
  206. Warnock, R. E. (1970). Micronutrient uptake and mobility within corn plants (Zea mays L.) in relation to phosphorus-induced zinc deficiency1. Soil Science Society of America Journal, 34(5), 765.
  207. https://doi.org/10.2136/sssaj1970.03615995003400050028x
  208. Wierzbowska, J., Sienkiewicz, S., & Światły, A. (2022). Yield and nitrogen status of maize (Zea mays L.) fertilized with solution of urea—ammonium nitrate enriched with P, Mg or S. Agronomy, 12(9), 2099.
  209. https://doi.org/10.3390/agronomy12092099
  210. Wilfret, G. J. (1992). Gladiolus. Pp. 143–157. In Larson, R. A. (editor). Introduction to Floriculture. Second edition, Academic Press. https://doi.org/10.1016/B978-0-12-437651-9.50011-7
  211. Xie, R., Zhao, J., Lu, L., Brown, P., Guo, J., & Tian, S. (2020). Penetration of foliar-applied Zn and its impact on apple plant nutrition status: In vivo evaluation by synchrotron-based X-ray fluorescence microscopy. Horticulture Research, 7(1), 147.
  212. https://doi.org/10.1038/s41438-020-00369-y
  213. Yuan, Z., Long, W., Liang, T., Zhu, M., Zhu, A., Luo, X., Fu, L., Hu, Z., Zhu, R., & Wu, X. (2023. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice. Plant and Soil, 486, 87–101. https://doi.org/10.1007/s11104-022-05567-2
  214. Zhang, S., Zheng, Q., Noll, L., Hu, Y., & Wanek, W. (2019). Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil Biology and Biochemistry, 135, 304–315. https://doi.org/10.1016/j.soilbio.2019.05.019
  215. Zhang, W., Xue, Y.-F., Chen, X.-P., Zhang, F.-S., & Zou, C.-Q. (2020). Zinc nutrition for high productivity and human health in intensive production of wheat. In Advances in Agronomy 163, 179–217.
  216. https://doi.org/10.1016/bs.agron.2020.05.004