Main Article Content

Abstract

A high salinity level negatively affects the morpho-physiological parameters of plants. As a result of salinity, these effects are considered crucial signs of plant damage.  In this study, ten Iraqi wheat cultivars were examined against two salinity levels (3 and 15 ds m-1) and some morphological, biochemical properties were measured. Also proline-related genes were analyzed using Ilumina RNA sequences and bioinformatics analyses. All cultivars demonstrated a decrease in the studied parameters with an increase saliness. 'Dijlah' cultivar showed best performance salinity stress, while 'Ibaa 99' was sensitive based on morphological and biochemical parameters. The competition was in favor of the sodium ion at the expense of the potassium ion in high salinity conditions. Proline accumulation in wheat blade leaves was about 2.5 times higher at the peak salt level. The transcriptomic analysis was done and the transcripts per million (TPM) values were estimated for some proline genes. The genes of probable proline transporter 2, proline     dehydrogenase 2, and GSK-like kinase 1A obtained the higher TPM values in cultivar 'Dijlah' cultivar than in 'Ibaa 99' cultivar. It can be concluded that 'Dijlah' cultivar is a salt tolerant cultivar as compare with the susceptible 'Ibaa 99' cultivar, and their proline accumulation was increased with salinity stress and was related with TPM values.  Morphological, biochemical and TPM values would offer a good combined- criteria for recognition the tolerant genotype.

Keywords

Ilumina Proline Salinity Sequencing TPM Wheat

Article Details

How to Cite
Al-Saadi, W. K. ., Hamdalla, M. S. ., & Aljuaifari, W. . (2024). Morphological, Biochemical and Proline-Related Genes Analyses in Resistant and Susceptible Wheat Cultivars in Iraq. Basrah Journal of Agricultural Sciences, 37(1), 119–133. https://doi.org/10.37077/25200860.2024.37.1.10

References

  1. Abboodi, A. H., Jobori, K. M. A., Jumaa, M. G., & Sultan, A. J. (2021). Isolation of multi-trait plant growth-promoting Serratia marcescens and evaluation of growth-promoting effects on wheat plant under salinity stress. Iraqi Journal of Biotechnology, 1(20).
  2. https://jige.uobaghdad.edu.iq/index.php/IJB/article/view/421
  3. Al-Malaky, I. A.., & Abdulkareem, M. A. (2019). Effect of plant residues-treated urea on growth and N-uptake of wheat (Triticum aestivum L.). Basrah Journal of Agricultural Sciences, 32, 35–44.
  4. https://doi.org/10.37077/25200860.2019.255
  5. Al–Saadi, W. K., & Kubba, A. J. (2015). Jestimation of efficient of random primers and effect of salt stress on chlorophyll b content in some bread wheat cultivars. Iraqi Journal of Agricultural Sciences, 46(4), 644-651.
  6. Alsulaiman, M. A., & Al-Ansari, A. S. (2023). Response of some wheat (Triticum aestivum L.) growth parameters to nano phosphate fertilizer compared to superphosphate fertilizer. Basrah Journal of Agricultural Sciences, 36(2), 215-225.
  7. https://doi.org/10.37077/25200860.2023.36.2.16
  8. Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, 59(2), 206-216.
  9. https://doi.org/10.1016/j.envexpbot.2005.12.006
  10. Ashraf, M. Y., Akhtar, K., Sarwar, G., & Ashraf, M. (2005). Role of the rooting system in salt tolerance potential of different guar accessions. Agronomy for Sustainable Development, 25(2), 243-249.
  11. https://hal.science/hal-00886295/
  12. Al-Temimi, H., Al-Shahwany, A., & Alsaadawi, I. (2013). Screening of bread wheat cultivars (Triticum aestivum L.) to water deficit stress under field conditions. Iraqi Journal of Science, 54(3), 577-584.
  13. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/12153
  14. Aycan, M., Baslam, M., Mitsui, T., & Yildiz, M. (2022). The TaGSK1, TaSRG, TaPTF1, and TaP5CS gene transcripts confirm salinity tolerance by increasing proline production in wheat (Triticum aestivum L.). Plants, 11(23), 3401.
  15. https://doi.org/10.3390/plants11233401
  16. Bajji, M., Lutts, S., & Kinet, J. M. (2000). Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in callus cultures issued from durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. Journal of Plant Physiology, 156(1), 75-83.
  17. https://doi.org/10.1016/S0176-1617(00)80275-8
  18. Barnes, J. (2022). Staple Security, Duke University Press. 320pp.
  19. https://www.dukeupress.edu/staple-security
  20. Bester, R., Cook, G., Breytenbach, J. H., Steyn, C., De Bruyn, R., & Maree, H. J. (2021). Towards the validation of high-throughput sequencing (HTS) for routine plant virus diagnostics: measurement of variation linked to HTS detection of citrus viruses and viroids. Virology Journal, 18(1), 1-19.
  21. https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01523-1#citeas
  22. Cuin, T. A., Betts, S. A., Chalmandrier, R., & Shabala, S. (2008). A root's ability to retain K+ correlates with salt tolerance in wheat. Journal of Experimental Botany, 59(10), 2697-2706.
  23. https://doi.org/10.1093/jxb/ern128
  24. El-Hendawy, S. E., Hu, Y., Yakout, G. M., Awad, A. M., Hafiz, S. E., & Schmidhalter, U. (2005). Evaluating salt tolerance of wheat genotypes using multiple parameters. European Journal of Agronomy, 22(3), 243-253.
  25. https://doi.org/10.1016/j.eja.2004.03.002
  26. El-Shintinawy, F., & El-Shourbagy, M. N. (2001). Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biologia plantarum, 44, 541-545.
  27. https://doi.org/10.1023/A:1013738603020
  28. Hasan, A., Hafiz, H. R., Siddiqui, N., Khatun, M., Islam, R., & Mamun, A. A. (2015). Evaluation of wheat genotypes for salt tolerance based on some physiological traits. Journal of Crop Science and Biotechnology, 18, 333-340.
  29. https://doi.org/10.1007/s12892-015-0064-2
  30. Hussain, L.A.; Hamdalla, M. Sh., & Yousif, S. A. (2023). Study baking quality of some bread wheat genotypes under water stress. Iraqi Journal of Agricultural Sciences, 54(4), 996- 1007.
  31. https://doi.org/10.36103/ijas.v54i4.1788
  32. Iqbal, N., Ashraf, M., & Ashraf, M. Y. (2008). Glycinebetaine, an osmolyte of interest to improve water stress tolerance in sunflower (Helianthus annuus L.): water relations and yield. South African Journal of Botany, 74(2), 274-281
  33. https://doi.org/10.1016/j.sajb.2007.11.016
  34. Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., Kalhoro, F. A., Ramzan, M., & Wahid, F. (2016). Effect of salts stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7(15), 2257.
  35. https://doi.org/10.4236/ajps.2016.715199
  36. Kesawat, M. S., Kherawat, B. S., Singh, A., Dey, P., Routray, S., Mohapatra, C., Saha, D., Ram, C., Siddique, K. H., & Kumar, A. J. P. (2022). Genome-wide analysis and characterization of the proline-rich extensin-like receptor kinases (PERKs) gene family reveals their role in different developmental stages and stress conditions in wheat (Triticum aestivum L.). Plants, 11(4), 496.
  37. https://doi.org/10.3390/plants11040496
  38. Kubba, A. J. I., Al-Saadi, W. K., & Munir, A. I. M. (2015). Estimation of genetic diversity and proline content in some Iraqi bread wheat cultivars. Iraqi Journal of Biotechnology, 14(1), 29-36.
  39. https://jige.uobaghdad.edu.iq/index.php/IJB/article/view/222
  40. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649
  41. https://doi.org/10.1093/bioinformatics/bts199
  42. Khan, M. H., & Panda, S. K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologiae Plantarum, 30, 1, 81.
  43. https://doi.org/10.1007/s11738-007-0093-7
  44. Lutts, S., Majerus, V., & Kinet, J. M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiologia Plantarum, 105(3), 450-458.
  45. https://doi.org/10.1034/j.1399-3054.1999.105309.x
  46. Mahboob, W., Khan, M. A., & Shirazi, M. U. (2016). Induction of salt tolerance in wheat (Triticum aestivum L.) seedlings through exogenous application of proline. Pakistan Journal of Botany, 48(3), 861-867.
  47. https://inis.iaea.org/search/search.aspx?orig_q=RN:47116069
  48. Mohi-Ud-Din, M., Hossain, M. A., Rohman, M. M., Uddin, M. N., Haque, M. S., Ahmed, J. U., Hossain, A., Hassan, M. M., Mostofa, M. G. J. P. (2021). Multivariate analysis of morpho-physiological traits reveals differential drought tolerance potential of bread wheat genotypes at the seedling stage. Plants, 10(5), 879.
  49. https://doi.org/10.3390/plants10050879
  50. Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043.
  51. https://doi.org/10.1093/jxb/erj100
  52. Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.
  53. https://doi.org/10.1016/j.ecoenv.2004.06.010
  54. Puhakka, L., Salo, M., Sääksjärvi, I. E., (2011). Bird diversity, birdwatching tourism and conservation in Peru: a geographic analysis. PLoS One 6(11), e26786.
  55. https://doi.org/10.1371/journal.pone.0026786
  56. Rasmuson, K. E., & Anderson, J. E. (2002). Salinity affects development, growth, and photosynthesis in cheatgrass. Rangeland Ecology & Management/Journal of Range Management Archives, 55(1), 80-87.
  57. https://doi.org/10.2307/4003267
  58. Raza, M. A. S., Zulfiqar, B., Iqbal, R., Muzamil, M. N., Aslam, M. U., Muhammad, F., Amin, J., Aslam, H. M. U., Ibrahim, M. A., & Uzair, M. (2023). Morpho-physiological and biochemical response of wheat to various treatments of silicon nano-particles under drought stress conditions. Scientific Reports, 13(1), 2700. https://doi.org/10.1038/s41598-023-29784-6
  59. Saad, D. A., Al-Shahwany, A. W., & Aboud, H. M. (2021). The effects of bio-fertilization and two levels of chemical fertilization on wheat (Triticum aestivum L.) under drought conditions. Iraqi Journal of Science, 62(10), 3443-3452.
  60. https://doi.org/10.24996/ijs.2021.62.10.3
  61. Sinthumule, R. R., Ruzvidzo, O., & Dikobe, T. B. (2022). Elucidation of the morpho-physiological traits of maize (Zea mays L.) under salt stress. Journal of Experimental Biology and Agricultural Sciences, 10(6), 1441–1452.
  62. https://doi.org/10.18006/2022.10(6).1441.1452
  63. Saleem, S., Iqbal, A., Ahmed, F., & Ahmad, M. (2021). Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum. Saudi Journal of Biological Sciences, 28(9), 5317-5324.
  64. https://doi.org/10.1016/j.sjbs.2021.05.056
  65. Shabbir, R., Singhal, R. K., Mishra, U. N., Chauhan, J., Javed, T., Hussain, S., Kumar, S., Anuragi, H., Lal, D., & Chen, P. (2022). Combined abiotic stresses: challenges and potential for crop improvement. Agronomy, 12(11), 2795.
  66. https://doi.org/10.3390/agronomy12112795
  67. Shavrukov, Y., Shamaya, N., Baho, M., Edwards, J., Ramsey, C., Nevo, E., Langridge, P., & Tester, M. (2011). Salinity tolerance and Na+ exclusion in wheat: variability, genetics, mapping populations and QTL analysis. Czech Journal Genetics and Plant Breeding, 47, S85-S93.
  68. https://doi.org/10.17221/3260-CJGPB
  69. Soudry, E., Ulitzur, S., & Gepstein, S. (2005). Accumulation and remobilization of amino acids during senescence of detached and attached leaves: in planta analysis of tryptophan levels by recombinant luminescent bacteria. Journal of Experimental Botany, 56(412), 695-702.
  70. https://doi.org/10.1093/jxb/eri054
  71. Tavakoli, M., Poustini, K., & Alizadeh, H. (2016). Proline accumulation and related genes in wheat leaves under salinity stress. Journal of Agricultural Science and Technology, 18(3), 707-716.
  72. http://jast.modares.ac.ir/article-23-4561-en.html
  73. Zhou, Y. B., Liu, C., Tang, D. Y., Yan, L., Wang, D., Yang, Y. Z., & Liu, X. M. (2018). The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. The Plant Cell, 30(5), 1100-1118. https://doi.org/10.1105/tpc.17.01000