Main Article Content

Abstract

This study was conducted to evaluate the dietary using of cumin as feed supplement on meat quality traits of the broiler chicken. Eight-day old broiler divided into 4 groups, 3 replicates (8 chicks/replicate) each for 45 days. Treatments included; (T1), basal diet without cumin or control, (T2), basal diet with 3 g. cumin. kg-1 of diet, (T3), basal diet with 6 g. cumin. kg-1 of diet, (T4), basal diet with 9 g. cumin. kg-1 of diet. At the end of this experiment after slaughtering all the chicks, samples were taken from breast and thigh meat. Results revealed that cumin supplementation did not significantly (p<0.01) affect moisture percentages of breast meat and protein percentages of thigh meat. Results also showed that use basal diet with 3 and 6 g.cumin. kg-1 of diet significantly (p<0.01) impact on meat water holding capacity and cooking loss percentages, while different cumin level impact on fat, ash percentages, pH value, TBA, TVB.N values, metmyoglobin, myoglobin value, copper, nickel, zinc, iron, magnesium, phosphorus and calcium concentrations of thigh meat,  as well as iron, magnesium, phosphorus, sodium and calcium concentrations of breast meat. Results conclude that using cumin as feed supplement in  3, 6 and 9 g.kg-1 level, improve most chemical and physical traits of meat.

Keywords

Cumin feed additive Broiler chicks Meat traits

Article Details

How to Cite
Majid, R. H. ., Albashr, T. K. M. ., Hamma, A. A. ., & Khidhir, Z. K. . (2020). Effect of Dietary Supplementing Cumin (Cuminum cyminum L.) on Meat Traits of the Broiler Chicks. Basrah Journal of Agricultural Sciences, 33(1), 159–171. https://doi.org/10.37077/25200860.2020.33.1.12

References

  1. Abbaspour, N.; Hurrell, R. & Kelishadi, R. (2014). Review on iron and its importance for human health. J. Res. Med. Sci.: Off. J. Isfahan Univ. Med. Sci., 19(2): 164-174.
  2. Akyildiz, S. & Denli, M. (2016). Application of plant extracts as feed additives in poultry nutrition. SCI Papers, Ser. D. Ani. Sci.: LIX: 71-74.
  3. Allison, P.D. (2010). Survival Analysis Using SAS: A Practical Guide, 2nd ed. SAS Press, Cary, N. Carolina: 337 pp.
  4. Association of Official Analytical Chemists & Helrich, K. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists. Arlington, V.A.: 771pp.
  5. Berrama, Z.; Temim, S.; Souames, S. & Ainbaziz, H. (2017). Growth performance, carcass and viscera yields, blood constituents and thyroid hormone concentrations of chronic heat stressed broilers fed diets supplemented with cumin seeds (Cuminum cyminum L.). Kafkas Univ Vet Fak Derg, 23(5): 735-742. https://doi.org/10.9775/kvfd.2017.17663.
  6. De Martino, L.; De Feo, V.; Fratianni, F. & Nazzaro, F. (2009). Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat. Prod. Commun., 4(12): 1741-1750. https://doi.org/10.1177/1934578X0900401226
  7. Diaz Carrasco, J.M.; Redondo, L.M.; Redondo, E. A.; Dominguez, J. E.; Chacana, A.P. & Fernandez Miyakawa, M.E. (2016). Use of plant extracts as an effective manner to control Clostridium perfringens induced necrotic enteritis in poultry. BioMed. Res. Int., 2016: 1-15. https://doi.org/10.1155/2016/3278359
  8. Duncan, D. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1): 1-42. https://doi.org/10.2307/3001478. https://www.jstor.org/stable/3001478
  9. Gagandeep, Dhanalakshmi, S.; Mendiz, E.; Rao, A.R. & Kale, R.K. (2003). Chemopreventive effects of Cuminum cyminum in chemically induced forestomach and uterine cervix tumors in murine model systems. Nutr. Cancer, 47(2): 171-180. https://doi.org/10.1207/s15327914nc4702_10
  10. Hernández, B.; Sáenz, C.; Alberdi, C. & Diñeiro, J.M. (2015). Comparison between two different methods to obtain the proportions of myoglobin redox forms on fresh meat from reflectance measurements. J. Food Sci. Technol., 52(12): 8212-8219. https://doi.org/10.1007/s13197-015-1917-x
  11. Hutton, L.A.; O'Neil, G.D.; Read, T.L.; Arest, Z.J.; Newton, M.E. & Macpherson, J.V. (2014). Electrochemical X–ray fluorescence spectroscopy for trace heavy metal Analysis: Enhancing X-ray fluorescence detection capabilities by four orders of Magnitude. Anal. Chem., 86(9): 4566-4572. https://doi.org/10.1021/ac500608d.
  12. Ibrahim, H.M.; Abou-Arab, A.A. & Salem, F. M.A. (2010). Addition of some natural plant extracts and their effects on lamb patties quality. J. Food Technol., 8(3): 134-142. https://doi.org/10.3923/jftech.2010.134.142.
  13. Johri, R. K. (2011). Cuminum cyminum and Carum carvi: An update. Pharmacogn. Rev., 5(9): 63-72. https://doi.org/10.4103/0973-7847.79101
  14. Krzywicki, K. (1982). The determination of haem pigments in meat.Meat Sci., 7(1): 29-36. https://doi.org/10.1016/0309-1740(82)90095-X
  15. Lassak, E. (1996), Encyclopedia of common natural ingredients used in food, drugs and cosmetics. Flavour Fragr. J., 11: 373-373. https://doi.org/10.1002/(SICI)1099-1026 (199611)11:6<373::AID-FFJ628>3.0.CO;2-5
  16. Lo, M.N.; Damon, L.J.; Tay, J.W.; Jia, S. & Palmer, A.E. (2020). Single cell analysis reveals multiple requirements for zinc in the mammalian cell cycle. Elife, 9: 1-24. https://doi.org/10.7554/eLife.51107
  17. Mahmood, S.; Rehman, A.; Yousaf, M.; Akhtar, P.; Abbas, G.; Hayat, K. & Shahzad, M.K. (2015). Comparative efficacy of different herbal plant’s leaf extract on haematology, ?intestinal histomorphology and nutrient digestibility in broilers. Adv. Zool. Bot., 3(2): 11-16. https://doi.org/10.13189/azb.2015.030201
  18. Madhukar, C. (2013). Phytochemical screening of cumin seeds extract. Rep. Opin., 5(1): 57-58. https://doi.org/10.7537/marsroj050113.10
  19. Malle, P. & Poumeyrol, M. (1989). A new chemical criterion for the quality control of fish: Trimethylamine/total volatile basic nitrogen (%). J. Food Prot., 52(6): 419-423. https://doi.org/10.4315/ 0362-028X-52.6.419
  20. McDowell, L.R. (2003). Minerals in Animal and Human Nutrition. 2nd ed., Amsterdam, Elsevier Sci. 660pp.
  21. Miraliakbari, H. & Shahidi, F. (2008). Antioxidant activity of minor components of tree nut oils. Food Chem., 111(2): 421-427. https://doi.org/10.1016/j.foodchem.2008.04.008
  22. Moawad, S.A.; El-Ghorab, A.H.; Hassan, M., Nour-Eldin, H. & El-Gharabli, M.M. (2015). Chemical and microbiological characterization of Egyptian cultivars for some spices and herbs commonly exported abroad. Food Nut. Sci., 6(07): 643-659. https://doi.org/10.4236/fns.2015.67068
  23. Murphy, M.A. & Zerby, H.N. (2004). Pre-rigor infusion of lamb with sodium chloride, phosphate, and dextrose solutions to improve tenderness. Meat Sci., 66(2): 343-349. https://doi.org/10.1016/S0309-1740(03)00109-8
  24. Muthamma, M.K.S.; Dholakia, H.; Kaul T.P.; & Vishveshwaraiah, P. (2008). Enhancement of digestive enzymatic activity by cumin (Cuminum cyminum L.) and role of spent cumin as a bionutrient. Food Chem., 110: 678- 683. https://doi.org/10.1016/j.foodchem.2008.02.062
  25. Rafiee, A.; Kheiri, F.; Rahimian, Y.; Faghani, M.; Valiollahi, M.R. & Miri, Y. (2014). The effect of ginger root (Zingiber officinale) and cumin (Cuminum cyminum) powder on performance, some haematological traits and intestinal morphology of broiler chicks. Res. Opin. Anim. Vet. Sci., 4(2): 96-100
  26. Rajib, A., SaifulIslam, A.T.M.; Ahmed R.; Rahman, T.; Rahman, A. & Ismail A.B. (2016). Detection of chromium (Cr) using X-ray fluorescence technique and investigation of Cr propagation from poultry feeds to egg and chicken flesh. Am. J. Eng. Res., 5(7): 243-247. http://www.ajer.org/papers/v5(07)/ZF050702430247.pdf
  27. Rao, R.R.; Platel, K. & Srinivasan, K. (2003). In vitro influence of spices and spice-active principles on digestive enzymes of rat pancreas and small intestine. Die Nahrung, 47(6): 408-412. https://doi.org/10.1002/food.200390091
  28. Srinivasan K. (2018). Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects, Food Qual. Saf., 2(1): 1-16. https://doi.org/10.1093/fqsafe/fyx031
  29. Wardlaw, F.B.; McCaskill, L.H. & Acton, J.C. (1973). Effect of postmortem muscle changes on poultry meat loaf properties. J. Food Sci., 38(3): 421-423. https://doi.org/10.1111/j.1365-2621.1973.tb01444.x
  30. Warriss, P.D. (2000). Meat Science. An Introductory Text. New York: Cabi. Publ. Inc.: 312 pp. https://doi.org/10.4102/jsava.v71i4.731
  31. Witte, V.C.; Krause, G.F. & Bailey, M.E. (1970). A new extraction method for determining 2?thiobarbituric acid values of pork and beef during storage. J. Food Sci., 35(5): 582-585. https://doi.org/10.1111/j.1365-2621.1970.tb04815.x
  32. Zomrawi, W.B. (2013). Response of broiler chicks and laying hens to dietary ginger (Ziangbir officinal) root powder. Ph.D. Thesis Univ. Khartou:. 147pp.