Main Article Content

Abstract

Our study was conducted at the faculty of Sciences of the nature and life from Mentouri Brothers University of Constantine, (36°21′54″ N: 6°36′52″ E), altitude above sea level by 574 m in March 2022. Cereals and pseudo-cereals, the world's most important crop, are an important source of sustenance for humans and animals. In addition, they are distinguished by their high tolerance to abiotic stressors. Hydrological deficit is a major factor limiting agricultural production; the impact varies according to the species, the stage of development of the plant and the severity of the stress. This research aims to evaluate the impact of water stress on H2O2 and Malondialdehyde MDA adaptation mechanisms, as well as the quantification of proteins, glycine betaine, phenols and flavonoids that can affect drought in three local species (Triticale, Barley and Maize) and one exotic plant (Quinoa). We also recorded an induced increase in triticale, barley, maize and quinoa stressed in Hydrogen Peroxide (H2O2), Malondialdehyde (MDA), proteins and glycine betaine with a concentration varied from 228.75 and 404.58 µmol.g-1 FM, 4.92 and 20.84 µmol.g-1 DM, 1.35 and 3.21 mg.g-1 FM, 0.34 and 0.54mg.g-1 DM, respectively. While the concentration of flavonoids and phenols total was recorded in maize by 20.14 mg QE g-1 DM and 375.47 mg GAE g-1 DM, respectively. Moreover, it reduced in triticale, barley and quinoa, with a value of 4.26-9.9 mg. EQ g-1 DM and 185.97-421.31 mg. EAGg-1 DM. The study demonstrated the species' resistance to and effectiveness in the face of water stress.

Keywords

Cereals quinoa Drought tolerance Flavonoids Oxidative stress Phenols

Article Details

How to Cite
Radia, B. ., Assia, B. ., Narimene, S. R. ., & Ali, G. . (2024). Evaluation of the Biochemical and Antioxidant Behaviour of Four Species Chenopodium quinoa Willd, Zea mays L., Triticosecale wittmack and Hordeum vulgare L. Effected by Oxidative Stress Caused by Water Stress. Basrah Journal of Agricultural Sciences, 37(2), 113–123. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1985

References

  1. Abdelaal, K. A. A., Hafez, Y. M., El-Afry, M. M., Tantawy, D. S., & Alshaal, T. (2018). Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity, and productivity of barley (Hordeum vulgare L.) under water deficit stress. Environmental Science and Pollution Research, 25(30), 30199–30211. https://doi.org/10.1007/s11356-018-3023-x
  2. Al-Hussine, H. D., & Alyousuf, A. A. (2021). Responses of local wheat varieties to Greenbug Schizaphus graminum and bird-cherry oat aphid Rhopalosiphum padi Infestation. Basrah Journal Agricultural Science, 34(1), 124-138.https://doi.org/10.37077/25200860.2021.34.1.11
  3. Allakhverdiev, S. I., Feyziev, Ya. M., Ahmed, A., Hayashi, H., Aliev, Ja. A., Klimov, V. V., Murata, N., & Carpentier, R. (1996). Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. Journal of Photochemistry and Photobiology B: Biology, 34(2–3), 149–157. https://doi.org/10.1016/1011-1344(95)07276-4
  4. Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/j.1439-037x.2010.00459.x
  5. Ashraf, M., & Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora - Morphology, Distribution, Functional Ecology of Plants, 200(6), 535–546. https://doi.org/10.1016/j.flora.2005.06.005
  6. Aziz, A., Akram, N. A., & Ashraf, M. (2018). Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiology and Biochemistry, 123, 192-203. https://doi.org/10.1016/j.plaphy.2017.12.004
  7. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins using the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
  8. Frih, B., Oulmi, A., Guendouz, A., Bendada, H., & Selloum, S. (2021). Statistical analysis of the relationships between yield and yield components in some durum wheat (Triticum durum Desf.) genotypes growing under semi-arid conditions. International Journal of Bio-resource and Stress Management, 12(4), 385-392. https://doi.org/10.23910/1.2021.2431
  9. Bhattacharjee, S. (2012). The language of reactive oxygen species signaling in plants. Journal of Botany, 2012, 1-22. https://doi.org/10.1155/2012/985298
  10. Blunden, G., Yang, M., Janicsák, G., Máthé, I., & Carabot-Cuervo, A. (1999). Betaine distribution in the Amaranthaceae. Biochemical Systematics and Ecology, 27(1), 87–92. https://doi.org/10.1016/s0305-1978(98)00072-6
  11. Cakmak, I. (2000). Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146, 185-205.http://doi.org/10.1046/j.1469-8137.2000.00630.x
  12. Chakraborty, U., & Pradhan, B. (2012). Drought stress-induced oxidative stress and antioxidative responses in four wheat (Triticum aestivum L.) varieties. Archives of Agronomy and Soil Science, 58(6), 617-630.https://doi.org/10.1080/03650340.2010.533660
  13. Croft, K. P. C., Juttner, F., & Slusarenko, A. J. (1993). Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiology, 101(1), 13–24. https://doi.org/10.1104/pp.101.1.13
  14. Demiral, T., & Türkan, I. (2004). Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161(10), 1089–1100. https://doi.org/10.1016/j.jplph.2004.03.009
  15. Foyer, C. H., & Noctor, G. (2000). Oxygen processing in photosynthesis: regulation and signaling. New Phytologist, 146(3), 359–388. https://doi.org/10.1046/j.1469-8137.2000.00667.x
  16. Gorham, J. (1996). Glycinebetaine is a major nitrogen-containing solute in the malvaceae. Phytochemistry, 43(2), 367–369. https://doi.org/10.1016/0031-9422(96)00312-3
  17. Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307. https://doi.org/10.1007/bf02374789
  18. Gabash, H. M. ., Resan, A. Z., Awad, K. M., Suhim, A. A., & Abdulameer, A. H. (2024). Biochemical responses of date palm Phoenix dactylifera L. to combined stress of salinity and nickel. Basrah Journal of Agricultural Sciences, 37(1), 236-246. https://doi.org/10.37077/25200860.2024.37.1.18
  19. Hernández, J. A., & Almansa, M. S. (2002). Short‐term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum, 115(2), 251–257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x
  20. Huang, J., Hirji, R., Adam, L., Rozwadowski, K. L., Hammerlindl, J. K., Keller, W. A., & Selvaraj, G. (2000). Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiology, 122(3), 747–756. https://doi.org/10.1104/pp.122.3.747
  21. Husain, T., Hussain, A., & Ahmed, M. (2009). Studies of vegetative behavior and climatic effects on some pasture grasses growing wild in Pakistan. Pakistan Journal of Botany, 41(5), 2379-2386. http://www.pakbs.org/pjbot/abstracts/41(5)/33.html
  22. Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321–326. https://doi.org/10.1016/s0308-8146(02)00423-5
  23. Loreto, F., & Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology, 127(4), 1781–1787. https://doi.org/10.1104/pp.010497
  24. Malik, S., Ashraf, M., Arshad, M., & Malik, T. A. (2015). Effect of ascorbic acid application on physiology of wheat under drought stress. Pakistan Journal of Agricultural Sciences, 52(1), 209–217. https://tehqeeqat.com/english/articleDetails/15170
  25. Maksymiec, W. (2007) Signalling Responses in Plants to Heavy Metal Stress. Acta Physiologiae Plantarum, 29, 177-187. https://doi.org/10.1007/s11738-007-0036-3
  26. Moussa, H. R., & Abdel-Aziz, S. M. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1(1), 31–36. https://www.cropj.com/january.html
  27. Nichols, S. N., Hofmann, R. W., & Williams, W. M. (2015). Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environmental and Experimental Botany, 119, 40–47. https://doi.org/10.1016/j.envexpbot.2015.05.014
  28. Randhir, R., Lin, Y. T., & Shetty, K. (2004). Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pacific Journal of Clinical Nutrition, 13(3), 295–307. https://pubmed.ncbi.nlm.nih.gov/15331344/
  29. Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., & von Korff, M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 64(11), 3201–3212. https://doi.org/10.1093/jxb/ert158
  30. Shafiq, S., Akram, N. A., & Ashraf, M. (2015). Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Scientia Horticulturae, 185, 68–75. https://doi.org/10.1016/j.scienta.2015.01.010
  31. Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057–1060. https://doi.org/10.1016/0031-9422(89)80182-7
  32. Xing, W., & Rajashekar, C. B. (1999). Alleviation of water stress in beans by exogenous glycine betaine. Plant Science, 148(2), 185–192. https://doi.org/10.1016/s0168-9452(99)00137-5
  33. Vázquez, J., Grillitsch, K., Daum, G., Mas, A., Beltran, G., & Torija, M. J. (2019). The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts. Food Microbiology, 78, 143-154. https://doi.org/10.1016/j.fm.2018.10.001
  34. Zonouri, M., Javadi, T., Ghaderi, N., & Saba, M. K. (2014). Effect of foliar spraying of ascorbic acid on chlorophyll a, chlorophyll b, total chlorophyll, carotenoids, hydrogen peroxide, leaf temperature and leaf relative water content under drought stress in grapes. Bulletin of Environment, Pharmacology and Life Sciences, 3, 178–184. https://www.semanticscholar.org/paper/Effect-of-Foliar-Spraying-of-Ascorbic-Acid-on-a-b-%2C-Zonouri-Javadi/d3b0d33db53ee938da4b67445565ff309320293e