Main Article Content

Abstract

Climate change poses significant challenges to the agricultural sector, exacerbating water scarcity and intensifying the irrational utilization of water reserves.  In response to these pressing issues, Artificial Intelligence (AI) optimizes irrigation, predicting water quantity and quality to ensure optimal crop yields. AI-driven approaches mitigate the challenges of water scarcity, enhancing precision in irrigation management. This review explores recent AI applications in irrigation, focusing on three areas: AI-powered estimation of Crop Evapotranspiration (ETo), integration of AI with Interet of Things (IoT) for Smart Irrigation Systems (Smart-IS), and AI's role in forecasting water quality for irrigation. AI algorithms optimize water usage by quantifying water needs, enabling real-time monitoring, autonomous decision-making, and mitigating risks associated with poor water quality, thus enhancing crop productivity while minimizing environmental impacts. This review emphasizes AI's role in addressing water scarcity and optimizing irrigation in agriculture by utilizing different technologies to ensure sustainable water management and food security. Future researchers will find this review valuable for understanding AI's current impact on irrigation and identifying avenues for further innovation.

Keywords

Climate Change Artificial Intelligence Internet of Things Smart Irrigation System Crop Evapotranspiration Irrigation Water

Article Details

How to Cite
Hamdaoui, H. ., Hsana, Y. ., Hamdi, I. ., Al kaddouri, H. ., & Kouddane, N.-E. . (2024). Revolutionizing Agriculture: A Comprehensive Review of AI-Enabled Precision Irrigation and Water Quality Forecasting. Basrah Journal of Agricultural Sciences, 37(2), 354–380. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2010

References

  1. Abd El-Aziz, M., & El-Abeid, S. (2023). DIGITAL AGRICULTURE AND ENVIRONMENTAL SUSTAINABILITY (FOR PROTECTION AGAINST PESTS AND DISEASES).
  2. Abdel-Fattah, M. K., Kotb Abd-Elmabod, S., Zhang, Z., & Merwad, A.-R. M. A. (2023). Exploring the Applicability of Regression Models and Artificial Neural Networks for Calculating Reference Evapotranspiration in Arid Regions. Sustainability, 15(21), 15494. https://doi.org/10.3390/su152115494
  3. Akhare, R. (2023). AI AND IOT BASED IRRIGATION SYSTEM USING SOIL MOISTURE. 10(6).
  4. Al-Ali, A. R., Al Nabulsi, A., Mukhopadhyay, S., Awal, M. S., Fernandes, S., & Ailabouni, K. (2019). IoT-solar energy powered smart farm irrigation system. Journal of Electronic Science and Technology, 17(4), 100017. https://doi.org/10.1016/j.jnlest.2020.100017
  5. Alanya-Arango, J., Alanya-Beltran, J., Ravichandran, S. K., Singh, B., Sasi, A., & Gangodkar, D. (2022). Internet of Things and Machine Learning based Intelligent Irrigation System for Agriculture. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), 67–72. https://doi.org/10.1109/IC3I56241.2022.10073254
  6. Allen, R. G., L.S, P., D, R., & M, S. (1998). Crop evapotranspiration,guidelines for computing crop water requirements.
  7. Almorox, J., Quej, V. H., & Martí, P. (2015). Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. Journal of Hydrology, 528, 514–522. https://doi.org/10.1016/j.jhydrol.2015.06.057
  8. Alreshidi, E. (2019). Smart Sustainable Agriculture (SSA) Solution Underpinned by Internet of Things (IoT) and Artificial Intelligence (AI). International Journal of Advanced Computer Science and Applications, 10(5). https://doi.org/10.14569/IJACSA.2019.0100513
  9. Al-Shourbaji, I., & Duraibi, S. (2023). IWQP4Net: An Efficient Convolution Neural Network for Irrigation Water Quality Prediction. Water, 15(9), Article 9. https://doi.org/10.3390/w15091657
  10. Amanullah, Khalid, S., Imran, Khan, H. A., Arif, M., Altawaha, A. R., Adnan, M., Fahad, S., Shah, A., & Parmar, B. (2020). Effects of Climate Change on Irrigation Water Quality. In S. Fahad, M. Hasanuzzaman, M. Alam, H. Ullah, M. Saeed, I. Ali Khan, & M. Adnan (Eds.), Environment, Climate, Plant and Vegetation Growth (pp. 123–132). Springer International Publishing. https://doi.org/10.1007/978-3-030-49732-3_6
  11. Ameri, F., Sabahi, A., Ranjbar, N., Hoseini, S., Khosrojerdi, R., Rajabi, E., & Dastani, M. (2022). Internet of Things (IoT) Applications in Hospitals: A Systematic Review. Health Technology Assessment in Action. https://doi.org/10.18502/htaa.v5i4.10170
  12. Anand, J., Yusoff, N., Ghani, H., & Thoti, K. K. (2023). Technological Applications in Smart Farming: A Bibliometric Analysis. Advanced and Sustainable Technologies (ASET), 2. https://doi.org/10.58915/aset.v2i2.334
  13. Aruna, M., Badari Narayana, P., Kumar, S. N., Ala Walid, Md. A., Prasad Patra, J., & Kumar, B. S. (2023). Arithmetic Optimization Algorithm with Machine Learning based Smart Irrigation System in IoT Environment. 2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT), 01–05. https://doi.org/10.1109/ICECCT56650.2023.10179741
  14. Ayaz, A., Aytekin, A., & Akgün, F. (2019). Intelligent and Natural Agriculture with Industry 4.0. Bartın Orman Fakültesi Dergisi, 21, 938–944. https://doi.org/10.24011/barofd.577714
  15. Babakhouya, A., Naji, A., Hnini, A., & Daaif, A. (2023). Agricultural IoT technology: An overview of usages, technologies, and challenges. 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 1–8. https://doi.org/10.1109/IRASET57153.2023.10153038
  16. Bhandari, B., Patel, R., Tiwari, A., Sharma, N., & Thawait, S. (2023). Role of IoT in Agriculture in India in Water Irrigation. International Journal for Research in Applied Science and Engineering Technology, 11, 6520–6524. https://doi.org/10.22214/ijraset.2023.53257
  17. Bhuiyan, M., Rahman, Md. M., Billah, M., Bhuiyan, M., & Saha, D. (2021). Internet of Things (IoT): A Review of Its Enabling Technologies in Healthcare Applications, Standards Protocols, Security, and Market Opportunities. IEEE Internet of Things Journal, PP. https://doi.org/10.1109/JIOT.2021.3062630
  18. Bidabadi, M., Babazadeh, H., Shiri, J., & Saremi, A. (2022). Estimation of Reference Crop Evapotranspiration Using ANN and ANFIS in Arid and Semi-Arid Climates. 15, 1412–1420.
  19. Bussi, G., Whitehead, P. G., Jin, L., Taye, M. T., Dyer, E., Hirpa, F. A., Yimer, Y. A., & Charles, K. J. (2021). Impacts of Climate Change and Population Growth on River Nutrient Loads in a Data Scarce Region: The Upper Awash River (Ethiopia). Sustainability, 13(3), Article 3. https://doi.org/10.3390/su13031254
  20. Chae, B. (Kevin). (2019). The evolution of the Internet of Things (IoT): A computational text analysis. Telecommunications Policy, 43(10), 101848. https://doi.org/10.1016/j.telpol.2019.101848
  21. Cozzetto, K., Chief, K., Dittmer, K., Brubaker, M., Gough, R., Souza, K., Ettawageshik, F., Wotkyns, S., Opitz-Stapleton, S., Duren, S., & Chavan, P. (2013). Climate change impacts on the water resources of American Indians and Alaska Natives in the U.S. Climatic Change, 120(3), 569–584. https://doi.org/10.1007/s10584-013-0852-y
  22. Demem, M. S. (2023). Impact and adaptation of climate variability and change on small-holders and agriculture in Ethiopia: A review. Heliyon, 9(8), e18972. https://doi.org/10.1016/j.heliyon.2023.e18972
  23. Derdour, A., Abdo, H. G., Almohamad, H., Alodah, A., Al Dughairi, A. A., Ghoneim, S. S. M., & Ali, E. (2023). Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments. Sustainability, 15(12), Article 12. https://doi.org/10.3390/su15129687
  24. Dhillon, S., Mishra, N., & Shakya, D. K. (2023). Applications of IoT and Various Attacks on IoT. In R. Kumar, A. K. Verma, T. K. Sharma, O. P. Verma, & S. Sharma (Eds.), Soft Computing: Theories and Applications (pp. 705–719). Springer Nature. https://doi.org/10.1007/978-981-19-9858-4_60
  25. Dimple, Singh, P. K., Rajput, J., Kumar, D., Gaddikeri, V., & Elbeltagi, A. (2023). Combination of discretization regression with data-driven algorithms for modeling irrigation water quality indices. Ecological Informatics, 75, 102093. https://doi.org/10.1016/j.ecoinf.2023.102093
  26. Dingman, S. L. (2015). Physical Hydrology: Third Edition. Waveland Press.
  27. Djaman, K., Mohammed, A. T., & Koudahe, K. (2023). Accuracy of Estimated Crop Evapotranspiration Using Locally Developed Crop Coefficients against Satellite-Derived Crop Evapotranspiration in a Semiarid Climate. Agronomy, 13(7), 1937. https://doi.org/10.3390/agronomy13071937
  28. Docheshmeh Gorgij, A., Askari, G., Taghipour, A. A., Jami, M., & Mirfardi, M. (2023). Spatiotemporal Forecasting of the Groundwater Quality for Irrigation Purposes, Using Deep Learning Method: Long Short-Term Memory (LSTM). Agricultural Water Management, 277, 108088. https://doi.org/10.1016/j.agwat.2022.108088
  29. El Bilali, A., Taleb, A., & Brouziyne, Y. (2021). Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245, 106625. https://doi.org/10.1016/j.agwat.2020.106625
  30. Ferreira, L. B., da Cunha, F. F., de Oliveira, R. A., & Fernandes Filho, E. I. (2019). Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM – A new approach. Journal of Hydrology, 572, 556–570. https://doi.org/10.1016/j.jhydrol.2019.03.028
  31. Gad, M., Saleh, A. H., Hussein, H., Elsayed, S., & Farouk, M. (2023). Water Quality Evaluation and Prediction Using Irrigation Indices, Artificial Neural Networks, and Partial Least Square Regression Models for the Nile River, Egypt. Water, 15(12), Article 12. https://doi.org/10.3390/w15122244
  32. Gao, F., Feng, G., Ouyang, Y., Wang, H., Fisher, D., Adeli, A., & Jenkins, J. (2017). Evaluation of Reference Evapotranspiration Methods in Arid, Semiarid, and Humid Regions. JAWRA Journal of the American Water Resources Association, 53(4), 791–808. https://doi.org/10.1111/1752-1688.12530
  33. George H. Hargreaves & Zohrab A. Samani. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96–99. https://doi.org/10.13031/2013.26773
  34. Ghosh, A., & Bera, B. (2023). Hydrogeochemical assessment of groundwater quality for drinking and irrigation applying groundwater quality index (GWQI) and irrigation water quality index (IWQI). Groundwater for Sustainable Development, 22, 100958. https://doi.org/10.1016/j.gsd.2023.100958
  35. Gorobets, N. (2022). USING OF DIGITAL TECHNOLOGIES IN AGRICULTURAL MANAGEMENT. Publishing House “Baltija Publishing”. http://www.baltijapublishing.lv/omp/index.php/bp/catalog/view/238/6475/13499-1
  36. Guo, H., Xia, Y., Jin, J., & Pan, C. (2022). The impact of climate change on the efficiency of agricultural production in the world’s main agricultural regions. Environmental Impact Assessment Review, 97, 106891. https://doi.org/10.1016/j.eiar.2022.106891
  37. Hamdoon, W., & Zengi̇n, A. (2023). A NEW IOT-BASED SMART IRRIGATION MANAGEMENT SYSTEM. Middle East Journal of Science, 9(1), Article 1. https://doi.org/10.51477/mejs.1142136
  38. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90
  39. Heramb, P., Rao, K., Subeesh, A., Singh, R., Rajwade, Y., Singh, K., Kumar, M., & Rawat, S. (2023). Reference evapotranspiration estimation using machine learning approaches for arid and semi-arid regions of India. Climate Research, 91. https://doi.org/10.3354/cr01723
  40. Hossen, M. (2023). Artificial Intelligence in Agriculture: A Systematic Literature Review. 14, 137–146.
  41. Hu, Z., Bashir, R. N., Rehman, A. U., Iqbal, S. I., Shahid, M. M. A., & Xu, T. (2022). Machine Learning Based Prediction of Reference Evapotranspiration (ET 0 ) Using IoT. IEEE Access, 10, 70526–70540. https://doi.org/10.1109/ACCESS.2022.3187528
  42. Hussein, A., Jabbar, K., Mohammed, A., & Alzubaidi, L. (2024). Harvesting the Future: AI and IoT in Agriculture. E3S Web of Conferences, 477. https://doi.org/10.1051/e3sconf/202447700090
  43. Hussein, E. E., Jat Baloch, M. Y., Nigar, A., Abualkhair, H. F., Aldawood, F. K., & Tageldin, E. (2023). Machine Learning Algorithms for Predicting the Water Quality Index. Water, 15(20), 3540. https://doi.org/10.3390/w15203540
  44. Irmak, S., Mohammed, A. T., & Kranz, W. L. (2019). Grain Yield, Crop and Basal Evapotranspiration, Production Functions, and Water Productivity Response of Drought-tolerant and Non-drought-tolerant Maize Hybrids under Different Irrigation Levels, Population Densities, and Environments: Part II. In South-c. Applied Engineering in Agriculture, 35(1), 83–102. https://doi.org/10.13031/aea.12871
  45. Irvem, A., & Ozbuldu, M. (2023). Evaluation of the performance of CFSR reanalysis data set for estimating reference evapotranspiration (ET0) in Turkey. Italian Journal of Agrometeorology, 2, 49–61. https://doi.org/10.36253/ijam-1325
  46. Jain, R. K. (2023). Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications. Smart Agricultural Technology, 4, 100215. https://doi.org/10.1016/j.atech.2023.100215
  47. Jayaraman, P., Nagarajan, K. K., & Partheeban, P. (2022). A Review on Artificial intelligence Algorithms and Machine Learning to Predict the Quality of Groundwater for Irrigation Purposes. 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), 01, 1–8. https://doi.org/10.1109/ICDSAAI55433.2022.10028857
  48. John, F., Lakshmi, D., & Kuncharam, M. (2023). Introduction to the Internet of Things: Opportunities, Perspectives and Challenges (pp. 1–34). https://doi.org/10.1002/9781119812524.ch1
  49. Katimbo, A., Rudnick, D. R., Zhang, J., Ge, Y., DeJonge, K. C., Franz, T. E., Shi, Y., Liang, W., Qiao, X., Heeren, D. M., Kabenge, I., Nakabuye, H. N., & Duan, J. (2023). Evaluation of artificial intelligence algorithms with sensor data assimilation in estimating crop evapotranspiration and crop water stress index for irrigation water management. Smart Agricultural Technology, 4, 100176. https://doi.org/10.1016/j.atech.2023.100176
  50. Keutgen, A. J. (2023). Climate change: Challenges and limitations in agriculture. IOP Conference Series: Earth and Environmental Science, 1183(1), 012069. https://doi.org/10.1088/1755-1315/1183/1/012069
  51. Khalid, U. (2023). Internet of Things (IoT): The IoT refers to the growing network of devices that are connected to the internet.
  52. Khalifeh, A., Al-Qammaz, A., Darabkh, K. A., Abualigah, L., Khasawneh, A. M., & Zinonos, Z. (2021). An AI Based Irrigation and Weather Forecasting System utilizing LoRaWAN and Cloud Computing Technologies. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 443–448. https://doi.org/10.1109/ElConRus51938.2021.9396431
  53. Khurape, A., & Kirve, M. (2019). INDUSTRY 4.0 IN AGRICULTURE FROM IoT ASPECTS. https://doi.org/10.13140/RG.2.2.11883.18727
  54. Kirby, M., & Mainuddin, M. (2022). The impact of climate change, population growth and development on sustainable water security in Bangladesh to 2100. Scientific Reports, 12(1), 22344. https://doi.org/10.1038/s41598-022-26807-6
  55. Koç, D. L., & Erkan Can, M. (2023). Reference evapotranspiration estimate with missing climatic data and multiple linear regression models. PeerJ, 11, e15252. https://doi.org/10.7717/peerj.15252
  56. Kumar, G., Kumari, R., Kishore, B. S. P. C., Saikia, P., Kumar, A., & Khan, M. L. (2020). Climate Change Impacts and Implications: An Indian Perspective (N. Roy, S. Roychoudhury, S. Nautiyal, S. K. Agarwal, & S. Baksi, Eds.; pp. 11–30). Springer International Publishing. https://doi.org/10.1007/978-3-030-32463-6_2
  57. Kumar, G., Nagaraju, G., Rohith, D., & Vasudevarao, A. (2023). Design and Development of Smart Irrigation System Using Internet of Things (IoT)—A Case Study. Nature Environment and Pollution Technology, 22, 523–526. https://doi.org/10.46488/NEPT.2023.v22i01.052
  58. Kumar, S., Kanchan, Kumar, A., & Aggarwal, P. (2023). INTERNET OF THINGS (IOT) APPLICATIONS AND CHALLENGES: A REVIEW. 11, 359–367.
  59. Kumar S, V., Singh, C. D., Rao, K. V. R., Kumar, M., Rajwade, Y. A., Babu, B., & Singh, K. (2023). Evaluation of IoT based smart drip irrigation and ETc based system for sweet corn. Smart Agricultural Technology, 5, 100248. https://doi.org/10.1016/j.atech.2023.100248
  60. Lakshmi, C., Pagadala, A., Bandam, S. M., Penugonda, A., Gangaraju, B., Ganapavarapu, T., Amirtharajan, R., Thanikaiselvan, V., & Mahalingam, H. (2023). Analysing agricultural information through machine learning and artificial intelligence for SMART IRRIGATION. 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), 1–6. https://doi.org/10.1109/ViTECoN58111.2023.10157366
  61. Lamichhane, M. (2022). Assessment of Future Water Availability and Irrigation Water Demand under Climate Change in the Kankai River Basin, Nepal. Journal of Earth Science & Climatic Change. https://doi.org/10.4172/2157-7617.1000639
  62. Lap, B. Q., Phan, T.-T.-H., Nguyen, H. D., Quang, L. X., Hang, P. T., Phi, N. Q., Hoang, V. T., Linh, P. G., & Hang, B. T. T. (2023). Predicting Water Quality Index (WQI) by feature selection and machine learning: A case study of An Kim Hai irrigation system. Ecological Informatics, 74, 101991. https://doi.org/10.1016/j.ecoinf.2023.101991
  63. Law and Policy, L. S. (2023). AI AND IoT: A COMPREHENSIVE OVERVIEW. 1, 1–10.
  64. Lin, Y., Zhang, X., Wang, Y., Shi, E., Lin, H., & Chen, G. (2023). Removal of Pb2+ and Cd2+ from irrigation water and replenishment of mineral nutrients using a low-cost mineral adsorbent derived from potassium-rich aluminum silicates. Journal of Environmental Chemical Engineering, 11(2), 109282. https://doi.org/10.1016/j.jece.2023.109282
  65. Liu, X., Wu, L., Zhang, F., Huang, G., Yan, F., & Bai, W. (2021). Splitting and Length of Years for Improving Tree-Based Models to Predict Reference Crop Evapotranspiration in the Humid Regions of China. Water, 13(23), 3478. https://doi.org/10.3390/w13233478
  66. López-Urrea, R., Martín De Santa Olalla, F., Fabeiro, C., & Moratalla, A. (2006). Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management, 85(1–2), 15–26. https://doi.org/10.1016/j.agwat.2006.03.014
  67. Lu, G., Li, S., Mai, G., Sun, J., Zhu, D., Chai, L., Sun, H., Wang, X., Dai, H., Liu, N., Xu, R., Petti, D., Li, C., Liu, T., & Li, C. (2023). AGI for Agriculture (arXiv:2304.06136). arXiv. https://doi.org/10.48550/arXiv.2304.06136
  68. Lytov, M. (2023). Methodological management tools of irrigation with artificial intelligence. Land Reclamation and Hydraulic Engineering, 13. https://doi.org/10.31774/2712-9357-2023-13-2-1-18
  69. Makwana, J. J., Tiwari, M. K., & Deora, B. S. (2023). Development and comparison of artificial intelligence models for estimating daily reference evapotranspiration from limited input variables. Smart Agricultural Technology, 3, 100115. https://doi.org/10.1016/j.atech.2022.100115
  70. Mehraj, S., Pandit, A. H., Ali, M. T., Rather, A. M. U. D., Bisati, I. A., Malik, H. A., & Ashraf, S. (2023). Climate Change:- General Overview and Implications on Agriculture and Allied Sectors. In J. A. Parray (Ed.), Climate Change and Microbiome Dynamics: Carbon Cycle Feedbacks (pp. 97–110). Springer International Publishing. https://doi.org/10.1007/978-3-031-21079-2_7
  71. Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323
  72. M’nassri, S., El Amri, A., Nasri, N., & Majdoub, R. (2022). Estimation of irrigation water quality index in a semi-arid environment using data-driven approach. Water Supply, 22(5), 5161–5175. https://doi.org/10.2166/ws.2022.157
  73. Mohammadi, B., & Mehdizadeh, S. (2020). Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 237, 106145. https://doi.org/10.1016/j.agwat.2020.106145
  74. Mohammed, A. T., Irmak, S., Kranz, W. L., Van Donk, S., & Yonts, C. D. (2019). Grain Yield, Crop and Basal Evapotranspiration, Production Functions and Water Productivity Response of Drought-tolerant and Non-drought-tolerant Maize Hybrids under Different Irrigation Levels and Population Densities: Part I. In Western Nebraska’s Semi-. Applied Engineering in Agriculture, 35(1), 61–81. https://doi.org/10.13031/aea.12870
  75. Mokhtar, A., Elbeltagi, A., Gyasi-Agyei, Y., Al-Ansari, N., & Abdel-Fattah, M. K. (2022). Prediction of irrigation water quality indices based on machine learning and regression models. Applied Water Science, 12(4), 76. https://doi.org/10.1007/s13201-022-01590-x
  76. Mujawar, R., & Mujawar, A. (2019). Internet Of Things (IoT): A Broad Review And Its Application.
  77. Musie, W., & Gonfa, G. (2023). Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon, 9(8), e18685. https://doi.org/10.1016/j.heliyon.2023.e18685
  78. Nazar, S., & Altalb, H. (2022). IoT and Artificial Neural Network-Based Water Control for Farming Irrigation System.
  79. Nguyen, D. P., Ha, H. D., Trinh, N. T., & Nguyen, M. T. (2023). Application of artificial intelligence for forecasting surface quality index of irrigation systems in the Red River Delta, Vietnam. Environmental Systems Research, 12(1), 24. https://doi.org/10.1186/s40068-023-00307-6
  80. Obaideen, K., Yousef, B. A. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. https://doi.org/10.1016/j.nexus.2022.100124
  81. Perwej, Dr. Y., Aboughaly, M., Kerim, B., & Harb, H. (2019). An Extended Review on Internet of Things (IoT) and Its Promising Applications. Volume 7, Page 8-22. https://doi.org/10.5120/cae2019652812
  82. Prein, A. F., Holland, G. J., Rasmussen, R. M., Clark, M. P., & Tye, M. R. (2016). Running dry: The U.S. Southwest’s drift into a drier climate state. Geophysical Research Letters, 43(3), 1272–1279. https://doi.org/10.1002/2015GL066727
  83. Quej, V. H., Castillo, C. D. L. C., Almorox, J., & Rivera-Hernandez, B. (2022). Evaluation of artificial intelligence models for daily prediction of reference evapotranspiration using temperature, rainfall and relative humidity in a warm sub-humid environment. Italian Journal of Agrometeorology, 1, 49–63. https://doi.org/10.36253/ijam-1373
  84. R, S., M, R., S, V., E, S. K., S, Y., Kumar, A., I, J. R., & K, V. (2023). A novel autonomous irrigation system for smart agriculture using AI and 6G enabled IoT network. Microprocessors and Microsystems, 101, 104905. https://doi.org/10.1016/j.micpro.2023.104905
  85. Radić, V., Radić, N., & Cogoljević, V. (2022). New technologies as a driver of change in the agricultural sector. Ekonomika Poljoprivrede, 69(1), 147–162. https://doi.org/10.5937/ekoPolj2201147R
  86. Ragab, R. (2023). The global challenges facing the water resources and irrigation sector. E3S Web of Conferences, 368, 03002. https://doi.org/10.1051/e3sconf/202336803002
  87. Raje, S., Erapu, V., Venkanna, U., & Das, D. (2022). eGWQI: Edge Intelligence Based Ground Water Quality Monitoring System for Smart Irrigation. 2022 IEEE International Symposium on Smart Electronic Systems (iSES), 568–573. https://doi.org/10.1109/iSES54909.2022.00124
  88. Ramadoss, P., Ananth, V., Navaneetha, M., & Oviya, U. (2023). E -Xpert Bot -Guidance and Pest Detection for Smart Agriculture using AI. 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), 797–802. https://doi.org/10.1109/CSNT57126.2023.10134588
  89. Routis, G., & Roussaki, I. (2023). Low Power IoT Electronics in Precision Irrigation. Smart Agricultural Technology, 5, 100310. https://doi.org/10.1016/j.atech.2023.100310
  90. Roy, T., George, J., Sarkar, A., Rashmi, I., Pal, R., Singhal, V., Singh, D., & Kumar, S. (2024). Climate Crisis and Adoption of Climate-Smart Agriculture Technologies (pp. 229–252). https://doi.org/10.1007/978-3-031-44397-8_13
  91. Salama, R., Al-Turjman, F., Aeri, M., & Yadav, S. P. (2023). Internet of Intelligent Things (IoT) – An Overview. 2023 International Conference on Computational Intelligence, Communication Technology and Networking (CICTN), 801–805. https://doi.org/10.1109/CICTN57981.2023.10141157
  92. Samadianfard, S., & Valizadeh Kamran, K. (2023). A novel method based on Landsat 8 and MODIS satellite images to estimate monthly reference evapotranspiration in arid and semi-arid climates. Water and Soil Management, Online First. https://doi.org/10.22098/mmws.2023.12048.1198
  93. Sandhu, D. H. (2016). The Future of Food and Agriculture:
  94. Sathiyanathan, N. (2020). 6 A Brief Study on IoT Applications.
  95. Şener, Ş., Şener, E., & Varol, S. (2020). Hydro-chemical and microbiological pollution assessment of irrigation water in Kızılırmak Delta (Turkey). Environmental Pollution, 266, 115214. https://doi.org/10.1016/j.envpol.2020.115214
  96. Shah, S., Munshi, M., Islam, M., Mollah, M., Zakir, H., & Sayed, S. (2023). Pollution Assessment of Selected Heavy Metals in Irrigation Water. https://doi.org/10.21203/rs.3.rs-2630617/v2
  97. Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation – a global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880. https://doi.org/10.5194/hess-14-1863-2010
  98. Singh, P., & Singh, N. (2020). Blockchain With IoT and AI: A Review of Agriculture and Healthcare. International Journal of Applied Evolutionary Computation, 11(4), 13–27. https://doi.org/10.4018/IJAEC.2020100102
  99. Smith, A. B., & Katz, R. W. (2013). US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Natural Hazards, 67(2), 387–410. https://doi.org/10.1007/s11069-013-0566-5
  100. Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5, 278–291. https://doi.org/10.1016/j.aiia.2021.11.004
  101. Sulaeman, D., Arif, S. S., & Sudarmadji. (2018). Trash-polluted irrigation: Characteristics and impact on agriculture. IOP Conference Series: Earth and Environmental Science, 148(1), 012028. https://doi.org/10.1088/1755-1315/148/1/012028
  102. Tace, Y., Tabaa, M., Elfilali, S., Leghris, C., Bensag, H., & Renault, E. (2022). Smart irrigation system based on IoT and machine learning. Energy Reports, 8, 1025–1036. https://doi.org/10.1016/j.egyr.2022.07.088
  103. Taneja, A., Nair, G., Joshi, M., Sharma, S., Sharma, S., Jambrak, A. R., Roselló-Soto, E., Barba, F. J., Castagnini, J. M., Leksawasdi, N., & Phimolsiripol, Y. (2023). Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy, 13(5), Article 5. https://doi.org/10.3390/agronomy13051397
  104. Taşan, S. (2022). Estimation of groundwater quality using an integration of water quality index, artificial intelligence methods and GIS: Case study, Central Mediterranean Region of Turkey. Applied Water Science, 13. https://doi.org/10.1007/s13201-022-01810-4
  105. Tausif, M., Dilshad, S., Umer, Q., Iqbal, M. W., Latif, Z., Lee, C., & Bashir, R. N. (2023). Ensemble learning-based estimation of reference evapotranspiration (ETo ). Internet of Things, 24, 100973. https://doi.org/10.1016/j.iot.2023.100973
  106. Tawfeek, M., Alanazi, S., & Ahmed, A. E.-A. (2022). Smart Greenhouse Based on ANN and IOT. Processes, 10, 2402. https://doi.org/10.3390/pr10112402
  107. Thakur, K., Pathan, A.-S. K., & Ismat, S. (2023). Emerging ICT Technologies and Cybersecurity: From AI and ML to Other Futuristic Technologies. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-27765-8
  108. Togneri, R., Prati, R., Nagano, H., & Kamienski, C. (2023). Data-driven water need estimation for IoT-based smart irrigation: A survey. Expert Systems with Applications, 225, 120194. https://doi.org/10.1016/j.eswa.2023.120194
  109. Ubah, J. I., Orakwe, L. C., Ogbu, K. N., Awu, J. I., Ahaneku, I. E., & Chukwuma, E. C. (2021). Forecasting water quality parameters using artificial neural network for irrigation purposes. Scientific Reports, 11(1), 24438. https://doi.org/10.1038/s41598-021-04062-5
  110. Uddin, M. Z., Saha, K. K., Monir uzzaman, M., Rahman, M. M., Ahmed, M., & Oliver, M. M. H. (2022). Estimation of Subsurface Pollutant Load and Its Seasonal Variation in an Irrigation Channel: Pollution Load in Irrigation Channel. European Journal of Agriculture and Food Sciences, 4(6), Article 6. https://doi.org/10.24018/ejfood.2022.4.6.606
  111. Valiantzas, J. D. (2015). Simplified limited data Penman’s ET 0 formulas adapted for humid locations. Journal of Hydrology, 524, 701–707. https://doi.org/10.1016/j.jhydrol.2015.03.021
  112. Valipour, M. (2013). INCREASING IRRIGATION EFFICIENCY BY MANAGEMENT STRATEGIES: CUTBACK AND SURGE IRRIGATION. 8(1).
  113. Valipour, M. (2015). Temperature analysis of reference evapotranspiration models: Reference evapotranspiration models. Meteorological Applications, 22(3), 385–394. https://doi.org/10.1002/met.1465
  114. Vij, A., Vijendra, S., Jain, A., Bajaj, S., Bassi, A., & Sharma, A. (2020). IoT and Machine Learning Approaches for Automation of Farm Irrigation System. Procedia Computer Science, 167, 1250–1257. https://doi.org/10.1016/j.procs.2020.03.440
  115. Wu, T., Zhang, W., Jiao, X., Guo, W., & Hamoud, Y. A. (2020). Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables. PLOS ONE, 15(6), e0235324. https://doi.org/10.1371/journal.pone.0235324
  116. Yamaç, S. S. (2021). Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area. Agricultural Water Management, 254, 106968. https://doi.org/10.1016/j.agwat.2021.106968
  117. Yan, S., Wu, L., Fan, J., Zhang, F., Zou, Y., & Wu, Y. (2021). A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China. Agricultural Water Management, 244, 106594. https://doi.org/10.1016/j.agwat.2020.106594
  118. Yanes, N. (2023). Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture. Computers Materials & Continua.
  119. Yin, J., Deng, Z., Ines, A. V. M., Wu, J., & Rasu, E. (2020). Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agricultural Water Management, 242, 106386. https://doi.org/10.1016/j.agwat.2020.106386
  120. Yu, H., Wen, X., Li, B., Yang, Z., Wu, M., & Ma, Y. (2020). Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China. Computers and Electronics in Agriculture, 176, 105653. https://doi.org/10.1016/j.compag.2020.105653
  121. Yu, H., Wen, X., Wu, M., Sheng, D., Wu, J., & Zhao, Y. (2022). Data-based groundwater quality estimation and uncertainty analysis for irrigation agriculture. Agricultural Water Management, 262, 107423. https://doi.org/10.1016/j.agwat.2021.107423
  122. Zhong, R., Chen, A., Zhao, D., Mao, G., Zhao, X., Huang, H., & Liu, J. (2023). Impact of international trade on water scarcity: An assessment by
  123. improving the Falkenmark indicator. Journal of Cleaner Production, 385, 135740. https://doi.org/10.1016/j.jclepro.2022.135740