Main Article Content


Investigation was carried out at the laboratory of Biotechnology, Faculty of Agriculture, Damascus University, during the season 2017-2018. Seven varieties were planted to determine the degree of genetic similarity using SSR-technique (Simple Sequence Repeats), and 14 double primers were used for this purpose. The analysis results revealed that all primers showed polymorphism among the evaluated varieties, except Bmag0385. primers produced a total of 42 alleles with a polymorphic percentage of 88.27%. The number of alleles for each primer varied from 1 allele for the primer (Bmac0067) to 7 alleles for the primer (Bmag0006) in average of 3 alleles per primer. Cluster analysis and Dendrogram showed the highest degree of genetic similarity between variety Arabi asuad  and variety Arabi abiad (0.7619). While it was low between variety Fourat4 and variety Arabi abiad (0.3571), and varieties Fourat4 and Fourat3 (0.3571) which indicated wide genetic diversity among them.


Barley Hordeum vulgare L. SSR marker polymorphic Dendrogram

Article Details

How to Cite
Khalil, M. R. ., Almahasneh , H. . A. ., & Lawand , S. Y. (2020). Detection of Genetic Polymorphism in Seven Barley Hordeum vulgare L. Varieties Using SSR. Basrah Journal of Agricultural Sciences, 33(2), 115–124.


  1. Al-Hadeithi, Z. S. M. (2016). Detection of genetic polymorphism in Iraqi barley using SSR- PCR Analysis. Iraqi Journal of Science, 57, 1158-1164.
  2. Al-Zergawy, M. A. A. (2016). The effect of foliar an nebras colloidal fertilizer at different growth stages on growth, yield and yield components of barley (Hordeum vulgare L.). Basrah Journal of Agriculture sciences, 29, 502- 513. (In Arabic).
  3. AOAD. (2017). Arab Organization for Agricultural Development. Publication of Arab Agricultural Statistics Yearbook, 37, Khartoum, 629pp.
  4. Arya, L., Verma, M., Singh, S. K., & Verrma, R. P. S. (2019). Spatio-temporal genetic diversity in Indian barley (Hordeum vulgare L.) varieties based on SSR markers. Indian Journal of Experimental Biology, 57, 545-552. IJEB 57(7) 545-552.pdf
  5. Beaubien, K. A., & Smith, K. P. (2006). New SSR markers for barley derived from the EST database. Barley Genetics. Newsletter. 36, 30-43.
  6. Chaabane, R., El Felah, M., Salah, H. B., Naceur, M. B., Abdelly, C., Ramla, D., Nada, A., & Saker, M. (2009). Molecular characterization of Tunisian barley (Hordeum vulgare L.) genotypes using Microsatellites (SSRs) Markers. European Journals of Scientific Research, 36, 6-15.
  7. El-Awady, A. M., & El-Tarras, A. E. (2012). Genetic diversity of some Saudi barley (Hordeum vulgare L.) landraces based on microsatellite markers. African Journal of Biotechnology, 11, 4826-4832.
  8. FAOSTAT data. (2018).
  9. Ferreira, J. R., Pereira, J. F., Turchetto, C., Minella, E., Consoli, L., & Delatorre, C. A. (2016). Assessment of genetic diversity in Brazilian barley using SSR markers. Genetics and Molecular Biology, 39, 86-96.
  10. Khatab, I. A., & Samah, M. A. (2013). Development of agronomical and molecular genetic markers associated with salt stress tolerance in some barley genotypes. Current Research Journal of Biological Sciences, 5, 198-204.
  11. Lawyer, F., Stoffel, S., Saiki, R., Chang, S., Landre, P., Abramson, R., & Gelfand, D. (1993). High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5' to 3' exonuclease activity. PCR Methods and Applications, 2, 275–287. 10.1101/gr.2.4.275
  12. Li, J. Z., Sjakste, T. G., Röder, M. S., & Ganal, M. W. (2003). Development and genetic mapping of 127 new microsatellite markers in barley. Theoretical and Applied Genetics, 107, 1021–1027.
  13. Mariey, S. A., Mohamed, M. N., Khatab, I. A., El-Banna, A. N., Abdel Khalek, A. F., & Al-Dinary, M. E. (2013). Genetic diversity analysis of some barley genotypes for salt tolerance using SSR markers. Journal of Agricultural Science, 5, 12- 28.
  14. Mishra, B. N., & Shivakumar, B. G. (2000). "Barley. 121-164. In: Rathore, P. S. (Ed.). Techniques and Managements of Field Crop Production. Agrobios, India, 526pp.
  15. Mohamed, A. M., Adel, A. E. (2012). Genetic diversity of some Saudi barley (Hordeum vulgare L.) landraces based on microsatellite markers: African Journal of Biotechnology, 11, 4826-4832.
  16. Monawekh, R., Azzam, H., & Abbas, S. H. (2015). The genetic diversity in some Syrian Hordeum vulgare L. genotypes using SSR markers. Damascus University Journal for Agricultural Sciences, 31, 93-108. (In Arabic).
  17. Morgante, M., Hanafey, M., & Powell, W. (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics.30, 194–200.
  18. OECD. (Organisation for Economic Co-Operation and Development). (2004). Series on the safety of noval foods and feeds No.12, Consensus document on compositional considerations for new varieties of barley (Hordeum vulgare L.). OECD, Paris, France, 69pp.
  19. Perry, D. J., Fernando, U., & Lee, S. J. (2014). Simple sequence repeat-based identification of Canadian malting barley varieties. Canadian Journal of Plant Science. 94, 485-496.
  20. Pourkheirandish, M., & Komatsuda, T. (2007). The importance of barley genetics and demonstration in a global perspectives. Annals of Botany, 100, 999-1008.
  21. Ramsay, L., Macaulay, M., degli Ivanissevich, S., MacLean, K., Cardle, L., Fuller, J., Edwards, K. J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W., & Waugh, R. (2000). A simple sequence repeat based linkage map of barley. Genetics, 156, 1997-2005.
  22. Sardou, M. A., Baghizadeh, A., Tavasoli, A., & Babaei, S. (2011). The use of microsatellite markers for genetic diversity assessment of genus Hordeum L. in Kerman province (Iran). African Journal of Biotechnology, 10, 1516-1521.
  23. Shuorvazdi, A., Mohammadi, S. A., Norozi, M., & Sadeghzadeh, B. (2014). Molecular analysis of genetic diversity and relationships of barley landraces based on microsatellite markers. Plant Genetic Researches, 1, 51-64.
  24. Smith, J. S. C., Chin. E. C. I., Shu. H., Smith. O. S., Wall. S. J., Senior. M. L., Mitchell, S. E., Kresovich. S., & Zeigle, J. (1997). ). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparisons with data from RFLPS and pedigree. Theoretical and applied Genetics, 95, 163- 173.
  25. SASG. (2018). Syrian Agricultural Statistic Group. Ministry of Agriculture in Syria, 196pp.
  26. Yeh, F. C., Yang, R. C., & Boyle, T.(1999). POPGENE 32- version 1.31. Population Genetics Software.
  27. Varshney, R. K., Marcel, T. C., Ramsay, L., Russell, J., Röder, M. S., Stein, N., Waugh, R., Langridge, P., Niks, R. E., & Graner, A. (2007). A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics. 114, 1091–1103.
  28. Von Korff, M., Plümpe, J., Michalek, W., Léon, J., & Pillen, K. (2004). Insertion of 18 new SSR markers into the Oregon Wolfe Barley map. Barley Genetics Newsletter, 34, 1-4.