Main Article Content

Abstract

This article presents the results of the effects of SiO2 and Fe3O4 nanoparticles on flowering, flower fertilization and nanoparticle accumulation in flower petals and almond fruit. The results showed that under normal conditions, 80% and 30% of the total number of flower buds in the almond varieties Leyla and Nuray form flowers. However, the fertilization of flowers in both varieties is only about 21.1%. The application of Fe3O4 nanoparticles increases flower formation by 86% in Leyla and 53.4% in Nuray, and the fertilization of the formed flowers by 44.5% in Leyla and 27.4% in Nuray compared to the control. The application of SiO2 nanoparticles increases flower formation by 78% in Leyla and 31.3% in Nuray, and the fertilization by 22.2% in Leyla and 46.8% in Nuray compared to the control. TEM analysis revealed that these particles bioaccumulated in all three layers (seed, endocarp and mesocarp) and that more pathologies occurred in the endocarp and mesocarp layers. Experimental results showed that nanoparticles did not affect fruit morphology. While Fe3O4 nanoparticles increased net seed yield by 3% in the Leyla variety, SiO2 nanoparticles reduced it by 2%, but no difference was observed in the Nuray variety.

Keywords

Nanotecnology Iron oxide Silicon dioxide nanoparticles Nanoparticle accumulation

Article Details

How to Cite
Ismayilova, L. M. ., Ahmadov, I. S. ., Gasimov, E. K., Rzayev, F. H. ., Abdiyev, V. B. ., & Bayramov, M. (2025). Effect of nanoparticles on the Almond (Prunus amygdalus) tree flower fertilization. Basrah Journal of Agricultural Sciences, 38(1), 59–71. https://doi.org/10.37077/25200860.2024.38.1.5

References

  1. Agayeva, N.J., Rzayev, F.H.,Gasimov, E.K., Mamedov, C..A., Ahmadov, I.S., Sadigova, N.A&Khusro A, Al-Dhabi N.A., & Arasu M.V., (2020). Exposure of rainbow trout (Oncorhynchusmykiss) to magnetite (Fe3O4) nanoparticlesin simplified food chain: Study on ultrastructural characterization. Saudi Journal of Biological Sciences, Volume 27, Issue 12, December, Pages 3258-3266. https://doi.org/10.1016/j.sjbs.2020.09.032
  2. AlKhafaji, M. H., Mohsin, R. H., & Kadhim, M. J. (2024). Biosynthesis of Iron Oxide Nanoparticles Using Food Origin Citrobacter freundii in Optimized Conditions. Basrah Journal of Agricultural Sciences, 37(2), 249–263. https://doi.org/10.37077/25200860.2024.37.2.19
  3. Almudhafar, S. M. A., & Al-Hamdani, M. A. (2022). Antibacterial and Anticancer Effects of Silver Nanoparticles Synthesised using Eragrostis tef and Vitellaria paradoxa Seeds Extract. Basrah Journal of Agricultural Sciences, 35(2), 132–159. https://doi.org/10.37077/25200860.2022.35.2.10
  4. Davarpanah, S., Tehranifar, A., Davarynejad, G., Aran, M., Abadía, J., & Khorassani, R., (2017). Effects of Foliar Nano-nitrogen and Urea Fertilizers on the Physical and Chemical Properties of Pomegranate (Punica granatum cv. Ardestani) Fruits. HortScience, 52(2), 288–294. https://doi.org/10.21273/hortsci11248-16
  5. Hajiyeva, A., Mamedov, C., Gasimov, E, Rzayev, F., Isayev, O., Khalilov, R., & Benis, K.Z (2024). Ultrastructural investigation of iron oxide nanoparticles accumulation in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Aquat ToxicolJul; 272:106961. https://doi.org/10.1016/j.aquatox.2024.106961.
  6. Hajiyeva, A, .Mamedov, C., Gasimov E.., Rzayev., F., .Khalilov R.Ahmadian,E,…. & Cho W.C., (2023). Ultrastructural characteristics of the accumulation of iron nanoparticles in the intestine of Cyprinus carpio (Linnaeus, 1758) under aquaculture. Ecotoxicology and Environmental Safety, 264 115477. https://doi.org/10.1016/j.ecoenv.2023.115477
  7. Huang, Y., Dong, Y., Ding, X., Ning, Z., Shen, J., Chen, H., & Su, Z., (2022). Effect of Nano-TiO2 Composite on the Fertilization and Fruit-Setting of Litchi. Nanomaterials, 12, (23), 4287. https://doi.org/10.3390/ nano12234287. https://www.sciencedirect.com/science/article/pii/S0147651323009818
  8. Ismayilova, L., Ahmadov, İ.,Gasimov, E., Rzayev, F., Sultanova, J., & Ahmadova, H., (2022). Effect of nanoparticles on the Golden Delicious apple flower fertilization process and accumulation in the fruit. Acta Botanica Caucasica, 1(2), p. 46-56 . https://doi.org/10.30546/abc. 1.2.46.
  9. Kumar, A., Singh, A., & Panigrahy, M. (2018). Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 37, 901–912. https://doi.org/10.1007/s00299-018-2277-6
  10. Laware S.L.& Raskar S. (2014) Influence of Zink Oxide Nanoparticles on Growth, Flowering and Seed Productivity in Onion.International Journal of Current Microbiology and Applied Sciences, volume 3, number 7, pp.874-881.
  11. Mosa, W.F.A., El-Shehawi, A.M., &Mackled, M. I (2021). Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application. Scientific Reports11, 10205. https://doi.org/10.1038/s41598-021-89885-y
  12. Nasirov, A., Rzayev, F., Seyidli, Y., Gasimov, E., Bunyatova, K., Ibrahimova, N., & Seyidbeyli, M., (2024). The Effect of ZnO Nanoparticles to Paradilepis scolicina Rudolphi, 1819 (Cyclophyllidea: Dilepididae) Cestode Observed First in Common Carp (Cyprinus carpio L., 1758) in Azerbaijan. Egyptian Journal of Veterinary Sciences, 55(1), 83-99. https://doi.org/10.21608/ejvs.2023.224849.1547.
  13. Piotr Salachna, Andzelika Bachynski, Agnieszka Zawadzinska, Rafał Piechocki and Małgorzata Mizielinska, Stimulatory Effect of Silver Nanoparticles on the growth and flowering of potted oriental Lilies, Agronomy 2019, 9, 610; https://doi.org/10.3390/agronomy9100610.
  14. Queirós, C. S. G. P., Cardoso, S., Lourenço, A., Ferreira, J., Miranda, I., Lourenço, M. J. V., & Pereira, H (2019). Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00424-2
  15. Rzayev, F.H., Gasimov, E.K., Agayeva, N.J., Manafov, A.A., Mamedov, C.A., Ahmadov, I.S., Ameer Khusro, Mariadhas V. A., Muhammad U.S., Naif A.Al-D., & Ki C. C. (2022). Microscopic characterization of bioaccumulated aluminium nanoparticles in simplified food chain of aquatic ecosystem. Journal of King Saud University - Science, 34, 1-8. https://doi.org/10.1016/j.jksus.2021.101666
  16. Salah, S., AL Yousuf, A. A., & Abass, M. H. (2023). Efficiency of Silicon and Silver Nanoparticles against the Infestation of Tribolium castanium (Herbst) (Coleoptera: Tenebrionidae) on Wheat Grains under Laboratory Conditions. Basrah Journal of Agricultural Sciences, 36(2), 175–184. https://doi.org/10.37077/25200860.2023.36.2.13
  17. Seydmohammadi, Z., Roein, Z., & Rezvanipour, S. (2019). Accelerating the growth and flowering of Eustoma grandiflorum by foliar application of nano-ZnO and nano-CaCO3. Plant Physiology Reports. https://doi.org/10.1007/s40502-019-00473-9