Main Article Content

Abstract

The experiment was conducted by the Department of Pharmacognosy and Medicinal plants, College of Pharmacy, Basrah university during the agricultural season of 2023-2024, to investigate the content of cucurbitacin E in various portions of Citrullus colosynthis (leaves and fruits). The hot continuous method by reflux apparatus was used to extract the leaves and fruits of plant with different solvents, including chloroform and hexane. Cucurbitacin E is identified by thin-layer chromatography (TLC). The concentration of cucurbitacin was quantified once via high-performance liquid chromatography (HPLC). The antioxidant activity of the chloroform extract and cucurbitacin E was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method, with vitamin C serving as the standard. In summer, the chloroform extract of leaves exhibits a higher concentration than the other extracts (11. μg ml-1). However, in winter, the chloroform extract of fruits has a greater concentration (20 μg ml-1). The hexane extract is not advisable for two seasons. The findings indicated a non- significant difference between the antioxidant efficacy of chloroform extract and cucurbitacin E, as assessed by the DPPH radical scavenging activity, with IC50 values of 0.75, 1.52, and 1.61 for vitamin C, chloroform extract, and cucurbitacin E, respectively.

Keywords

antioxidant activity Citrullus colocynthis cucurbitacin E fruits part leaves part seasons

Article Details

How to Cite
Mohammed, H. E. ., Al-Mousawi, U. M. ., Khamees, A. H. ., & AL Wafi, H. . (2025). Identification of Cucurbitacin E Accumulated in Leaves and Fruits of the Iraqi Citrullus colocynthis During Two Seasons with Antioxidant Activity. Basrah Journal of Agricultural Sciences, 38(1), 138–151. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2531

References

  1. Abdelkhalek, A. A., Sharaf, A.-M. M. A., Rabie, M., & El-Subbagh, H. I. (2017). Derivatives of Cucurbitacin-E-glucoside produced by Curvularia lunata NRRL 2178: Anti-inflammatory, antipyretic, antitumor activities, and effect on biochemical parameters. Future Journal of Pharmaceutical Sciences, 3(2), 124–130. https://doi.org/10.1016/j.fjps.2017.04.006
  2. Al-Nablsi, S., El-Keblawy, A., Ali, M. A., Mosa, K. A., Hamoda, A. M., Shanableh, A., Almehdi, A. M., & Soliman, S. S. M. (2022). Phenolic Contents and Antioxidant Activity of Citrullus colocynthis Fruits, growing in the Hot Arid Desert of the UAE, influenced by the Fruit Parts, Accessions, and Seasons of Fruit Collection. Antioxidants, 11(4). https://doi.org/10.3390/antiox11040656
  3. Chanda, J., Biswas, S., Kar, A., & Mukherjee, P. K. (2020). Determination of cucurbitacin E in some selected herbs of ayurvedic importance through RP-HPLC. Journal of Ayurveda and Integrative Medicine, 11(3), 287–293. https://doi.org/10.1016/j.jaim.2019.01.002
  4. Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1). https://doi.org/10.3390/antiox9010076
  5. Cheng, X., Qin, M., Chen, R., Jia, Y., Zhu, Q., Chen, G., Wang, A., Ling, B., & Rong, W. (2023). Citrullus colocynthis (L.) Schrad.: A Promising Pharmaceutical Resource for Multiple Diseases. Molecules, 28(17), 1–15. https://doi.org/10.3390/molecules28176221
  6. Delgado-Tiburcio, E. E., Cadena-Iñiguez, J., Santiago-Osorio, E., Ruiz-Posadas, L. del M., Castillo-Juárez, I., Aguiñiga-Sánchez, I., & Soto-Hernández, M. (2022). Pharmacokinetics and Biological Activity of Cucurbitacins. Pharmaceuticals, 15(11). https://doi.org/10.3390/ph15111325
  7. Devendra, N. K., Attard, E. G., Raghunandan, D., & Seetharam, Y. N. (2012a). Study on Seasonal Variation on the Content of Cucurbitacin of Various Vegetative Parts of Trichosanthes cucumerina L. var. cucumerina. International Journal of Plant Research, 1(1), 25–28. https://doi.org/10.5923/j.plant.20110101.04
  8. Devendra, N. K., Attard, E. G., Raghunandan, D., & Seetharam, Y. N. (2012b). Study on Seasonal Variation on the Content of Cucurbitacin of Various Vegetative Parts of Trichosanthes cucumerina L. var. cucumerina. International Journal of Plant Research, 1(1), 25–28. https://doi.org/10.5923/j.plant.20110101.04
  9. Fallah-Huseini, H., Bahadori, A., Nikkhah, E., & Ziaee, M. (2023). Citrullus colocynthis (L.) Schrad: A Promising Prospect Towards Pharmacology, Traditional Uses, and Potential Applications. Biomedical Research Bulletin, 1(2), 77–83. https://doi.org/10.34172/biomedrb.2023.14
  10. Gulcin, İ., & Alwasel, S. H. (2023). DPPH Radical Scavenging Assay. Processes, 11(8). https://doi.org/10.3390/pr11082248
  11. Hegazi, E. S. S., Abd Allatif, A. M., & Abdel-Fattah, A. A. (2024). Response of Grafted Olive (Olea europaea L. Cv. Coratina) to Water Deficit Conditions. Basrah Journal of Agricultural Sciences, 37(1), 134–148. https://doi.org/10.37077/25200860.2024.37.1.11
  12. Jafargholizadeh, N., Zargar, S. J., Yassa, N., & Tavakoli, S. (2016). Purification of Cucurbitacins D, E, and I from Ecballium Elaterium (L.) A. Rich Fruits and Study of Their Cytotoxic Effects on the AGS Cell Line. Asian Pacific Journal of Cancer Prevention, 17(10), 4631–4635. https://doi.org/10.22034/APJCP.2016.17.10.4631
  13. Jing, S., Zou, H., Wu, Z., Ren, L., Zhang, T., Zhang, J., & Wei, Z. (2020). Cucurbitacins: Bioactivities and synergistic effect with small-molecule drugs. In Journal of Functional Foods (Vol. 72). Elsevier Ltd. https://doi.org/10.1016/j.jff.2020.104042
  14. Kapoor, M., Kaur, N., Sharma, C., Kaur, G., Kaur, R., Batra, K., & Rani, J. (2021). Citrullus colocynthis an Important Plant in Indian Traditional System of Medicine. Pharmacognosy Reviews, 14(27), 22–27. https://doi.org/10.5530/phrev.2020.14.4
  15. Kaushik, U., Aeri, V., & Mir, S. R. (2015). Cucurbitacins - An insight into medicinal leads from nature. In Pharmacognosy Reviews (Vol. 9, Issue 17, pp. 12–18). Medknow Publications. https://doi.org/10.4103/0973-7847.156314
  16. Khalaf, A. B. (2024). Using Geospatial Techniques to Analysis the Impact of Climate Change on Water and Agriculture Resources: Case study Khanaqin District in Diyala, Iraq. Basrah Journal of Agricultural Sciences, 37(1), 55–70. https://doi.org/10.37077/25200860.2024.37.1.05
  17. Khan, M., Khan, M., Al-hamoud, K., Adil, S. F., Shaik, M. R., & Alkhathlan, H. Z. (2023). Diversity of Citrullus colocynthis (L.) Schrad Seeds Extracts: Detailed Chemical Profiling and Evaluation of Their Medicinal Properties. Plants, 12(3). https://doi.org/10.3390/plants12030567
  18. Kim, Y. C., Choi, D., Zhang, C., Liu, H. feng, & Lee, S. (2018). Profiling cucurbitacins from diverse watermelons (Citrullus spp.). Horticulture Environment and Biotechnology, 59(4), 557–566. https://doi.org/10.1007/s13580-018-0066-3
  19. Krishnaprabu, Dr. S. (2020). Therapeutic potential of medicinal plants: A review. Journal of Pharmacognosy and Phytochemistry, 9(2), 2228–2233. https://doi.org/10.22271/phyto.2020.v9.i2ak.11184
  20. Maja, D., Mavengahama, S., & Mashilo, J. (2022). Cucurbitacin biosynthesis in cucurbit crops, their pharmaceutical value and agricultural application for management of biotic and abiotic stress: A review. South African Journal of Botany, 145, 3–12. https://doi.org/10.1016/j.sajb.2021.08.044
  21. Matter, H. AB., & Ayad, T. M. (2022). Ion-Selective Electrodes for the Determination of Periodate IO4- Using Periodate - Tetrazolium Chloride (TTC) as an Ion-Pair and its Applications. The Scientific Journal of University of Benghazi, 35(2), 152–156. https://doi.org/10.37376/sjuob.v35i2.3803
  22. Mkhize, P., Shimelis, H., & Mashilo, J. (2023). Cucurbitacins B, E and I Concentrations and Relationship with Drought Tolerance in Bottle Gourd [Lagenaria siceraria (Molina) Standl.]. Plants, 12(19). https://doi.org/10.3390/plants12193492
  23. Olarewaju, O. O., Fajinmi, O. O., Arthur, G. D., Coopoosamy, R. M., & Naidoo, K. (2023). Effect of climate change on the production of Cucurbitaceae species in North African countries. Journal of Agriculture and Food Research, 14(August), 100742. https://doi.org/10.1016/j.jafr.2023.100742
  24. Panda, S. P., Sarangi, A. K., & Panigrahy, U. P. (2018). Isolation of Cucurbitacin-B From Cucumis Callosus and Its Hypoglycemic Effect in Isolated Rat Enterocytes. International Journal of Pharmacy and Pharmaceutical Sciences, 10(5), 123. https://doi.org/10.22159/ijpps.2018v10i5.25788
  25. Pant, P., Pandey, S., & Dall’Acqua, S. (2021a). The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry and Biodiversity, 18(11). https://doi.org/10.1002/cbdv.202100345
  26. Patel, S. B., Attar, U. A., Sakate, D. M., & Ghane, S. G. (2020). Efficient extraction of cucurbitacins from Diplocyclos palmatus (L.) C. Jeffrey: Optimization using response surface methodology, extraction methods and study of some important bioactivities. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-58924-5
  27. Ponsankar, A., Sahayaraj, K., Senthil-Nathan, S., Vasantha-Srinivasan, P., Karthi, S., Thanigaivel, A., Petchidurai, G., Madasamy, M., & Hunter, W. B. (2020). Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Environmental Science and Pollution Research, 27(19), 23390–23401. https://doi.org/10.1007/s11356-019-04438-1
  28. Ramezani, M., Hasani, M., Ramezani, F., & Abdolmaleki, M. K. (2021). Cucurbitacins: A focus on cucurbitacin E as a natural product and their biological activities. Pharmaceutical Sciences, 27(1), 1–13. https://doi.org/10.34172/PS.2020.66
  29. Rao, V., & Poonia, A. (2023). Citrullus colocynthis (bitter apple): bioactive compounds, nutritional profile, nutraceutical properties and potential food applications: a review. Food Production, Processing and Nutrition, 5(1). https://doi.org/10.1186/s43014-022-00118-9
  30. Salama, F., Abd El-Ghani, M., El-Tayeh, N., Amro, A., & El-Naggar, S. (2017). Some aspects of drought resistance in Citrullus colocynthis L. in the Egyptian deserts. Taeckholmia, 37(1), 52–66. https://doi.org/10.21608/taec.2017.11935
  31. Seong, N. H. (2015). Traditional Chinese medicine. Singapore’s Health Care System: What 50 Years Have Achieved, 4(2), 351–361. https://doi.org/10.1142/s0219030304001922
  32. Sharma, S. K., & Singh, A. P. (2012). In Vitro Antioxidant and Free Radical Scavenging Activity of Nardostachys jatamansi DC. JAMS Journal of Acupuncture and Meridian Studies, 5(3), 112–118. https://doi.org/10.1016/j.jams.2012.03.002
  33. Shawali, A. S., & Samy, N. A. (2015). Functionalized formazans: A review on recent progress in their pharmacological activities. Journal of Advanced Research, 6(3), 241–254. https://doi.org/10.1016/j.jare.2014.07.001
  34. Soni, U., Brar, S., & Gauttam, V. K. (2015). Effect of Seasonal Variation on Secondary Metabolites of Medicinal Plants. International Journal of Pharmaceutical Sciences and Research, 6(9), 3654. https://doi.org/10.13040/IJPSR.0975-8232.6(9).3654-62
  35. Tosun, E., & Baysar, A. (2019). Isolation and purification of cucurbitacin D and I from Ecballium elaterium (L.) A. Rich fruit juice. Macedonian Journal of Chemistry and Chemical Engineering, 38(2), 171–182. https://doi.org/10.20450/mjcce.2019.1648
  36. Wakeel, A., Jan, S. A., Ullah, I., Shinwari, Z. K., & Xu, M. (2019). Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. PeerJ, 2019(10), 1–19. https://doi.org/10.7717/peerj.7857
  37. Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60–69. https://doi.org/10.1002/fft2.10
  38. Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 1–26. https://doi.org/10.3390/molecules23040762
  39. Zhang, H., Birch, J., Pei, J., Mohamed Ahmed, I. A., Yang, H., Dias, G., Abd El-Aty, A. M., & El-Din Bekhit, A. (2019). Identification of six phytochemical compounds from asparagus officinalis l. Root cultivars from New Zealand and china using UAE-SPE-UPLC-MS/MS: Effects of extracts on H2 O2-induced oxidative stress. Nutrients, 11(1), 1–17. https://doi.org/10.3390/nu11010107