Main Article Content

Abstract

Biodegradable biofilms are sustainable environmental solution and are increasingly important with the increasing awareness of consumers about the environment. This study aimed to prepare and characterize biodegradable poly-3-hydroxybutyrate (P3HB) films with improved physical and chemical properties after incorporation with plant extracts. These biofilms are antibacterial for use in food packaging and medical supplies. The new (P3HB) bioplastic films were prepared using casting technique. The prepared biofilms were the first P3HB/G (resulting from P3HB and ginger extract) and the second P3HB/C (resulting from P3HB and clove extract). All the mentioned biofilms were compared to the P3HB/M which was prepared from P3HB and chloroform only. The thickness, moisture, dissolvability and swelling of the new resulted biofilms were measured. Their chemical and morphological properties were studied using SEM and FTIR. Their ability to inhibit Staphylococcus aureus and Escherichia coli were evaluated, as well as their efficiency in food packaging and preservation. The obtained results demonstrated that the P3HB/C and P3HB/G films exhibit good chemical, physical and antibacterial properties due to the phytochemicals incorporated into the polyester polymer or loaded into their matrix. Thickness, moisture and swelling for P3HB/C and P3HB/G were significantly different; compared to P3HB/M. Yet, when comparing P3HB/C and P3HB/G, the moisture was the only markedly various. The prepared biodegradable packaging materials are great alternatives to conventional plastics since it could be friendly ones to environment

Keywords

Biodegradable polyester Poly-3-hydroxybutyrate Bioplastic films Plant extracts

Article Details

How to Cite
Oudah, N. A. ., Al-Madany, R. A. ., Mahdi, Z. A. ., Hussain, S. A. ., Albaidhani, F. A. ., Alkhafaji, E. N., & Alali, R. . (2025). Preparation of New Biofilms Suitable for Manufacturing Processes for A sustainable Environment. Basrah Journal of Agricultural Sciences, 38(1), 152–169. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2532

References

  1. Alali, R., Ismael, T. N., Rajab, W. J., Shather, A. H., Jabbar, A. H., Elawady, A., ... & Yadav, A. (2024). Application of B3S Monolayer as a Promising Anode in K-Ion Batteries. Chemistry Africa, 7(5), 2881-2887.‏ https://doi.org/10.1007/s42250-024-00906-5
  2. Al-Hilphy, A. R., Al-Asadi, M. H., Khalaf, J. H., & Khaneghah, A. M. (2024). A Comprehensive Review of Modified Atmosphere Packaging for Poultry Meat: Effects on the Qualitative Characteristics and Shelf-Life Stability. Basrah Journal of Agricultural Sciences, 37(1), 303–340. https://doi.org/10.37077/25200860.2024.37.1.24
  3. Alkhafaji, E. N., Oda, N. A., & Ahmed, L. M. (2022). Characterization of silver nanohybrid with layers double hydroxide and demonstration inhibition of antibiotic-resistance Staphylococcus aureus. Egyptian Journal of Chemistry, 65(6), 143-157.
  4. https://doi.org/10.21608/ejchem.2022.97856.4564
  5. AlKhafaji, M. H ., Mohsin, R. H. ., & Alshaikh Faqri, A. M. . (2024). Food Additive Mediated Biosynthesis of AgNPs with Antimicrobial Activity Against Hypermucoviscous Enterotoxigenic Foodborne Klebsiella pneumoniae. Basrah Journal of Agricultural Sciences, 37(1), 278–295. https://doi.org/10.37077/25200860.2024.37.1.21
  6. .Al-Madany, R. A. and Oudah, N. A. (2024). Association of cd24, cd27, and co-stimulatory molecules cd80 immunological marker expression on b-cells of human peripheral blood with development of celiac disease. Iraqi Journal of Hematology, 13(2), 208-212. https://doi.org/10.4103/ijh.ijh_28_24
  7. Al-Murshedi, S., Abedi, F., Ali, A. M., Alali, R., & Almaameri, I. M. (2022, May). Influence of patient thickness on radiation dose during abdominal radiography. In 2022 5th International Conference on Engineering Technology and its Applications (IICETA) (pp. 334-337). IEEE.‏ https://doi.org/10.1109/IICETA54559.2022.9888539
  8. Abbas, R. J., & Al-Subaihawi, R. A. (2022). The Effect of Aqueous and Alcoholic Extract of Asparagus (Asparagus officinalis L.) Roots on the inhibition of some Bacteria and Fungi. Basrah Journal of Agricultural Sciences, 35(2), 119–131. https://doi.org/10.37077/25200860.2022.35.2.09
  9. Abrha, H., Cabrera, J., Dai, Y., Irfan, M., Toma, A., Jiao, S., & Liu, X. (2022). Bio-based plastics production, impact and end of life: A literature review and content analysis. Sustainability, 14(8), 4855.‏ https://doi.org/10.3390/su14084855
  10. Acharjee, S. A., Gogoi, B., Bharali, P., Sorhie, V., & Alemtoshi, B. W. (2024). Recent trends in the development of Polyhydroxyalkanoates (PHAs) based biocomposites by blending with different bio-based polymers. Journal of Polymer Research, 31(4), 98.‏ https://doi.org/10.1007/s10965-024-03947-z
  11. Ahmad, A., Banat, F., Alsafar, H., & Hasan, S. W. (2024). An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conversion and Biorefinery, 14(3), 3057-3076.‏ https://doi.org/10.1007/s13399-022-02581-3
  12. Andrade, M. A., Ribeiro-Santos, R., Bonito, M. C. C. & Sanches-Silva, A. (2018). Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. Lwt, 92, 497-508.‏ https://doi.org/10.1016/j.lwt.2018.02.041
  13. Arifin, H. R., Djali, M., Nurhadi, B., Azlin-Hasim, S., Masruchin, N., Vania, P. A., & Hilmi, A. (2022). Corn starch-based bionanocomposite film reinforced with ZnO nanoparticles and different types of plasticizers. Frontiers in Sustainable Food Systems, 6, 886219.‏ https://doi.org/10.3389/fsufs.2022.886219
  14. Azeem, M., Hanif, M., Mahmood, K., Ameer, N., Chughtai, F. R. S., & Abid, U. (2023). An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polymer Bulletin, 80(1), 241-262.‏ https://doi.org/10.1007/s00289-022-04091-8
  15. Hasan, H. T., & Kadhim, E. J. (2018). Phytochemical investigation of Corchorus olitorius L. leaves cultivated in Iraq and it’s in vitro antiviral activity. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512), 115-122.‏ https://doi.org/10.31351/vol27iss2pp115-122
  16. Cano, A., Andres, M., Chiralt, A., & González-Martinez, C. (2020). Use of tannins to enhance the functional properties of protein based films. Food Hydrocolloids, 100, 105443.‏ https://doi.org/10.1016/j.foodhyd.2019.105443
  17. Couto, M., & Cates, C. (2019). Laboratory guidelines for animal care. Vertebrate Embryogenesis: Embryological, Cellular, and Genetic Methods, 407-430.‏ https://doi.org/10.1007/978-1-4939-9009-2_25
  18. Deshmukh, R.K., & Gaikwad, K. K. (2024). Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery, 14(4), 4419-4440.‏ https://doi.org/10.1007/s13399-022-02623-w
  19. Dutta, D., & Sit, N. (2023). Application of natural extracts as active ingredient in biopolymer based packaging systems. Journal of Food Science and Technology, 60(7), 1888-1902.‏ https://doi.org/10.1007/s13197-022-05474-5
  20. Escobar, M., Ghareeb, M., Mudhafar, M., Hezam, M. J., Ghazaly, N. M., Zaki, S. H., ... & Islam, S. (2024). Enhancing quantum capacitance in BNyne/Graphene heterostructures through transition-metal dopants for high-performance supercapacitors. Journal of Organometallic Chemistry, 1022, 123404.‏ https://doi.org/10.1016/j.jorganchem.2024.123404
  21. Hiep, N. T., Nguyen, M. K., Nhut, H. T., Hung, N. T. Q., Manh, N. C., Lin, C., ... & Nguyen, D. D. (2023). A review on sterilization methods of environmental decontamination to prevent the coronavirus SARS-CoV-2 (COVID-19 virus): A new challenge towards eco-friendly solutions. Science of The Total Environment, 904, 166021.‏https://doi.org/10.1016/j.scitotenv.2023.166021
  22. Hoehndorf, R., Schofield, P. N., & Gkoutos, G. V. (2015). The role of ontologies in biological and biomedical research: a functional perspective. Briefings in bioinformatics, 16(6), 1069-1080.‏ https://doi.org/10.1093/bib/bbv011
  23. Iseppi, R., Truzzi, E., Sabia, C., & Messi, P. (2024). Efficacy and synergistic potential of cinnamon (Cinnamomum zeylanicum) and clove (Syzygium aromaticum L. Merr. & Perry) essential oils to control food-borne pathogens in fresh-cut fruits. Antibiotics, 13(4), 319.‏ https://doi.org/10.3390/antibiotics13040319
  24. Jing, S., Wu, L., Siciliano, A. P., Chen, C., Li, T., & Hu, L. (2023). The critical roles of water in the processing, structure, and properties of nanocellulose. ACS nano, 17(22), 22196-22226.‏ https://doi.org/10.1021/acsnano.3c06773
  25. Jawad, M. K., Jassim, J. M., Haddawi, S. F., & Hamidi, S. M. (2025). Temperature effects on the conversion coupling efficiency in dye-based plasmonic random laser gain media. Journal of Theoretical and Applied Physics, 19(01), 1-6. https://doi.org/10.57647/j.jtap.2025.1901.01
  26. ‏Kanmani, P., & Rhim, J. W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate polymers, 106, 190-199.‏ https://doi.org/10.1016/j.carbpol.2014.02.007
  27. Khaleel, Z. J., & Haydar, N. H. (2024). The synergistic effects of lipopeptides and bacteriocins produced by lactobacillus sp. of human samples against clinical pathogens of wound infection. Iraqi Journal of Agricultural Sciences, 55(3), 1098-1109.‏ https://doi.org/10.36103/y7dmb632
  28. Ladhari, S., Vu, N.-N., Boisvert, C., Saidi, A., & Nguyen-Tri, P. (2023). Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS Applied Bio Materials. https://doi.org/10.1021/acsabm.3c00078
  29. Luciano, B. (2022). Polyhydroxyalkanoates based systems: The future of drug delivery and tissue engineering devices. In Bio-Based Nanomaterials (pp. 133-169). Elsevier.‏ https://doi.org/10.1016/B978-0-323-85148-0.00004-X
  30. Mathkoor, M. M., Alkhfaji, E. N. and Abd-Ulamer Oda, N. (2023). Using GC-MS Technology to Identify the Compounds Resulting from Mixing of Alcoholic Extracts of Some Medicinal Plants. Journal of Medicinal and Chemical Sciences, 6(3), 486-499. https://doi.org/10.26655/JMCHEMSCI.2023.3.5
  31. Obeed, H. H., Huzam, M. J., Ridha, N. J., Alosfur, F. K. M., Tahir, K. J., Madlol, R., & Hussein, B. M. (2022, January). Comprehensive study on the effect of laser on human blood. In AIP Conference Proceedings (Vol. 2386, No. 1). AIP Publishing.‏ https://doi.org/10.1063/5.0067072
  32. Oda, N. A. U., Mathkoor, M. M., & Abbas, Z. A. K. (2022). Incorporation of Curcumin in Bilayer Matrices to Reduce the Toxic Effects to Be Used for Wound-Healing Application. The Egyptian Journal of Hospital Medicine, 89(2), 6937-6946.‏ https://doi.org/10.21608/ejhm.2022.271916
  33. Oudah, N. A., Ghareeb, A. K. R., Kelkawi, A. H. A., & Oudah, M. A. (2024). Assessment of the binding immunoglobulin protein, il-1β, and some hematological indices in patients with urinary tract infections. Medical Journal of Babylon, 21(3), 579-584. https://doi.org/10.4103/mjbl.mjbl_1306_23
  34. Pech-Cohuo, S. C., Martín-López, H., Uribe-Calderón, J., González-Canché, N. G., Salgado-Tránsito, I., May-Pat, A., ... & Pacheco, N. (2022). Physicochemical, mechanical, and structural properties of bio-active films based on biological-chemical chitosan, a novel ramon (Brosimum alicastrum) starch, and quercetin. Polymers, 14(7), 1346.‏ https://doi.org/10.3390/polym14071346
  35. Pikhtirova, A., Pecka-Kiełb, E., & Zigo, F. (2023). Antimicrobial activity of saponin-containing plants. Journal of dairy, veterinary & animal research, 12(2).‏ https://doi.org/10.15406/jdvar.2023.12.00336
  36. Premjit, Y., Pandhi, S., Kumar, A., Rai, D. C., Duary, R. K., & Mahato, D. K. (2022). Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Research International, 151, 110879.‏ https://doi.org/10.1016/j.foodres.2021.110879
  37. Romero-Castelán, E., Rodríguez-Hernández, A. I., Chavarría-Hernández, N., López-Ortega, M. A., & del Rocio López-Cuellar, M. (2023). Natural antimicrobial systems protected by complex polyhydroxyalkanoate matrices for food biopackaging applications—A review. International Journal of Biological Macromolecules, 233, 123418.‏ https://doi.org/10.1016/j.ijbiomac.2023.123418
  38. Rui, L., Xie, M., Hu, B., Zhou, L., Yin, D., & Zeng, X. (2017). A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydrate Polymers, 173, 473-481.‏ https://doi.org/10.1016/j.carbpol.2017.05.072
  39. Saifullah, M., Shishir, M. R. I., Ferdowsi, R., Rahman, M. R. T., & Van Vuong, Q. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science & Technology, 86, 230-251.‏ https://doi.org/10.1016/j.tifs.2019.02.030
  40. Saleh, B. H., Yahya, H. N., & Ibrahim, R. N. (2023). Study antibacterial activity of laurus nobilis leaves water extract on some isolates of pathogenic bacteria. Iraqi Journal of Agricultural Sciences, 54(1), 18-24.‏ https://doi.org/10.36103/ijas.v54i1.1672
  41. Salim, F. D., Ibrahim, K. M., & Yousif, W. H. (2022). The effectiveness of extract the seed of pomegranate in healing the wound induced inrabbits skin. Iraqi Journal of Agricultural Sciences, 53(2), 265-271.‏ https://doi.org/10.36103/ijas.v53i2.1533
  42. Satchanska, G., Davidova, S., & Petrov, P. D. (2024). Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers, 16(8), 1159.‏ https://doi.org/10.3390/polym16081159
  43. Sharifi-Rad, M., Varoni, E. M., Salehi, B., Sharifi-Rad, J., Matthews, K. R., Ayatollahi, S. A., ... & Rigano, D. (2017). Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules, 22(12), 2145.‏ https://doi.org/10.3390/molecules22122145
  44. Sharma, K., Malik, K., Choudhary, S., Kumar, S., Dhull, N., & Sujeeta. (2022). Polyhydroxybutyrates (PHBs): an eco-friendly alternative to petroleum-based plastics for diminution of their detrimental effects on the environment.‏ https://doi.org/10.52804/ijaas2022.322
  45. Srisa, A., Promhuad, K., San, H., Laorenza, Y., Wongphan, P., Wadaugsorn, K., ... & Harnkarnsujarit, N. (2022). Antibacterial, antifungal and antiviral polymeric food packaging in post-COVID-19 era. Polymers, 14(19), 4042.‏ https://doi.org/10.3390/polym14194042
  46. Sun, Z., Li, X., Tang, Z., Li, X., Morrell, J. J., Beaugrand, J., ... & Zheng, Q. (2022). Antibacterial films made of bacterial cellulose. Polymers, 14(16), 3306.‏ https://doi.org/10.3390/polym14163306
  47. Tamimi, N., Mohammadi Nafchi, A., Hashemi‐Moghaddam, H., & Baghaie, H. (2021). The effects of nano‐zinc oxide morphology on functional and antibacterial properties of tapioca starch bionanocomposite. Food Science & Nutrition, 9(8), 4497-4508.‏ https://doi.org/10.1002/fsn3.2426
  48. Tan, C., Han, F., Zhang, S., Li, P., & Shang, N. (2021). Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. International Journal of Molecular Sciences, 22(18), 9663. https://doi.org/10.3390/ijms22189663
  49. Warkoyo, W., Dzikrika, A. I., Wahyudi, V. A., Siskawardani, D. D., & Zahoor, M. (2023). Study of Physical, Mechanical, and Barrier Edible Film Based on Yellow Sweet Potato with Additional Glycerol and Palm Oil. In E3S Web of Conferences (Vol. 432, p. 00037). EDP Sciences.‏ https://doi.org/10.1051/e3sconf/202343200037
  50. Warkoyo, W., Ruskamila, W., Wachid, M., Zekker, I., & Siskawardani, D. D. (2024). Characteristics of Edible Film Elephant Foot Yam Starch with Calcium Carbonate as Cross–Linking Agent. In BIO Web of Conferences (Vol. 104, p. 00049). EDP Sciences.‏ https://doi.org/10.1051/bioconf/202410400049
  51. Wiset, L., Poomsa-ad, N., Jomlapeeratikul, P., & Borompichaichartkul, C. (2014). Effects of drying temperatures and glycerol concentrations on properties of edible film from konjac flour. Journal of Medical and Bioengineering Vol, 3(3).‏ https://doi.org/10.12720/jomb.3.3.171-174
  52. Yang, J. (2022). From zero waste to material closed loop: the way towards circular economy. Springer Nature.‏ https://doi.org/10.1007/978-981-16-7683-3
  53. Yousif, A. A., & Hassan, W. A. (2023). Molecular Identification of Postharvest Moldy Core Pathogens on Apple and Application of Biocontrol Products of Essential Oils (EOs) and Trichoderma harzianum. Basrah Journal of Agricultural Sciences, 36(1), 1–15. https://doi.org/10.37077/25200860.2023.36.1.01
  54. Zanetti, M., Carniel, T. K., Dalcanton, F., dos Anjos, R. S., Riella, H. G., de Araújo, P. H., ... & Fiori, M. A. (2018). Use of encapsulated natural compounds as antimicrobial additives in food packaging: A brief review. Trends in Food Science & Technology, 81, 51-60.‏ https://doi.org/10.1016/j.tifs.2018.09.003