Main Article Content

Abstract

A field experiment was conducted during the spring season of 2021 in the Experimental field of the College of agricultural engineering sciences - university of Baghdad with the aim of knowing the effect of soaking seeds with nano-iron at concentrations of (0, 50, 100 and 150 mg L-1) on seed viability, field emergence, grain yield and  components and grain Iron content  The results showed significant increase in germination indicators, seedling field emergence, grain yield and its components accompanied by an increase of nano-iron concentrations up to 150 mg L-1. Moreover, the results of seed Iron content showed accumulated of toxic level of Nano-Iron in seeds. The toxicity includes imbalance liver’s functions, kidneys and oxidative imbalance of laboratory mice.

Keywords

Antioxidants liver function microelements nanoparticles seed stimulation

Article Details

How to Cite
Hassan, Z. A., Al-Fahad, A. C. ., & Cheyed, S. H. . (2025). Effect of Soaking Maize Seeds with Nano-Iron Fertilizer on Germination, Yield and Animal’s Physiological Characteristics toxicity. Basrah Journal of Agricultural Sciences, 38(1), 183–192. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2536

References

  1. Aboulhoda, B. E., Othman, D. A., Rashed, L. A., Alghamdi, M. A., & Esawy, A. E. W. E. (2023). Evaluating the hepatotoxic versus the nephrotoxic role of iron oxide nanoparticles: One step forward into the dose-dependent oxidative effects. Heliyon, 9(11).‏ https://doi.org/10.1016/j.heliyon.2023.e21202
  2. Aguilar, Z. P. (2013). Types of nanomaterials and corresponding methods of synthesis. Nanomaterials for Medical Applications, 50, 15-29. https://doi.org/10.1016/B978-0-12-385089-8.00002-9
  3. Al-Dawoodi, R. M., & Al-Fahad, A. C. (2021, November). Vitality of Sorghum Seeds Effected by Storage Duration and Seeds Stimulation with Iron Nanoparticles. In IOP Conference Series: Earth and Environmental Science (Vol. 904, No. 1, p. 012069). IOP Publishing.‏ https://iopscience.iop.org/article/10.1088/1755-1315/904/1/012069
  4. Al-Fahad, A. C., Hammadi, H. J., & Azzam, M. R. (2020). Effect of Sodium Azide Mutagen on Genetic Parameters in Maize (Zea mays L.). Indian Journal of Ecology, 47, 1755-1315.‏
  5. Ali, H. M., Fhaid, K. A., & Awad, K. M. (2024). Managing Dust Mite Oligonychus afrasiaticus (McGregor) (Acari: Tetranchidae) Infesting Date Palm Orchards by Using Lemongrass Extract and Nanosulfur. Basrah Journal of Agricultural Sciences, 37(1), 1-14.‏ ‏ https://doi.org/10.37077/25200860.2024.37.1.01
  6. Al-Issawi, A. M., & Al-Fahad, A. C. (2023, December). Effect of Foliar Apllication of Glutathione on Viability and Vigor Seeds of Sorghum Effected by Heat Stress. In IOP Conference Series: Earth and Environmental Science (Vol. 1252, No. 1, p. 012026). IOP Publishing.‏ https://iopscience.iop.org/article/10.1088/1755-1315/1252/1/012026
  7. Al-Issawi, A. K. M., & Al-Fahad, A. C. (2023, November). Response of Sorghum Seeds to Soaking with Antioxidants (Glutathione) and Grown at Three Temperatures in Laboratory Conditions. In IOP Conference Series: Earth and Environmental Science (Vol. 1259, No. 1, p. 012096). IOP Publishing.‏ https://doi:10.1088/1755-1315/1259/1/012096
  8. Al-Rawi, A. S. M., Al-Khafaji, M. J., & Cheyed, S. H. (2023). Effect of spraying dates with nano-zinc on some characteristics of quality, viability and emergence of maize. Bulgarian Journal of Agricultural Science, 29(6), 1165-1169.‏ https://journal.agrojournal.org/page/en/details.php?article_id=4481
  9. Al-Rawi, A. S. M., Mohammed, A. A., Al-Taweel, S. K., & Cheyed, S. H. (2024). The role of nanotechnology in crop improvement– A review. SABRAO J. Breed. Genet, 56(5), 1929-1937.‏ http://doi.org/10.54910/sabrao2024.56.5.16
  10. Al-Rawi, A. S. M., Shachai, N. F., & Cheyed, S. H. (2024). Effect of Spraying Dates with Concentrations of Nano-Zinc on some Maize Growth Traits, Yield Quality Traits and Field Emergence. Yield Traits. In IOP Conference Series: Earth and Environmental Science (Vol. 1371, No. 5, p. 052017). IOP Publishing.‏ https://iopscience.iop.org/article/10.1088/1755-1315/1371/5/052017
  11. Al-Shaheen, M. R., Hamad, R. M., Abdaly, M. M. A., & Al-Rawi, O. H. (2020). Assessment the impact of iron nanoparticles and dry yeast extract on the corn (Zea maize L.). In Journal of physics: conference series (Vol. 1535, No. 1, p. 012052). IOP Publishing.‏ http://doi.org/10.1088/1742-6596/1535/1/012052
  12. AL-Shumary, A. M., Ali, H. A., & Alabdulla, S. A. (2019). Effect of spraying concentrations of integrated nano-fertilizer on growth and yield of genotypes of corn (Zea mays L.). Muthanna J. of Agric. Sci., 7 (2): 114, 121.‏ https://doi.org/10.18081/MJAS/2019-7/114-121
  13. Alsulaiman, M.A., Al-Ansari, A.S., (2023). Response of some wheat (Triticum aestivum L.) growth parameters to nano phosphate fertilizer compared to superphosphate fertilizer. Basrah Journal of Agricultural Sciences 36, 215-225. https://doi.org/10.37077/25200860.2023.36.2.16
  14. Altayy, A. L., & Cheyed, S. H. (2021). Vitality and Vigour Seed of Wheat Affected by Storage and Soaking with MnNPs. In IOP Conference Series: Earth and Environmental Science (Vol. 904, No. 1, p. 012073). IOP Publishing.‏ https://doi.org/10.1088/1755-1315/904/1/012073.
  15. Elsahookie, M.M. & Cheyed S.H. (2023). Seed Growth Relationships. Dept of Field, Crop Sciences, College of Agriculture, University of Baghdad. of pp .150.
  16. Elsahookie, M. M., Cheyed, S. H., & Dawood, A. A. (2021). Microgametogenesis tolerant to heat stress in some maize crosses. Annals of the Romanian Society for Cell Biology, 4392-4399.‏ http://annalsofrscb.ro/index.php/journal/article/view/1934
  17. Hassan, Z. A., Obaid, H. H., & Al-Darraji, M. N. (2020). The toxicity of gold nanoparticles on liver function of albino mice. International Journal of Advanced Science and Technology, 29(9s), 542-548.‏ http://sersc.org/journals/index.php/IJAST/article/view/13132
  18. Janmohammadi, M., Amanzadeh, T., Sabaghnia, N., & Dashti, S. (2016). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica, 107(2), 265-276.‏ https://doi.org/10.14720/aas.2016.107.2.01
  19. Zhang Jin, Z. J., Wang Min Yan, W. M., Wu Liang Huan, W. L., Wu Jiang Guo, W. J., & Shi ChunHai, S. C. (2008). Impacts of combination of foliar iron and boron application on iron biofortification and nutritional quality of rice grain.‏ http://doi.org/10.1080/01904160802244803
  20. Kadem, F.A. & Abed N.Y. (2018). Application of Statistics and Analysis of Agricultural Experiments (Practical Part). Ministry of Higher Education and Scientific Research, College of Agricultural, University of Baghdad, Iraq. Pp:200.
  21. Kobayashi, T., Nozoye, T., & Nishizawa, N. K. (2019). Iron transport and its regulation in plants. Free Radical Biology and Medicine, 133, 11-20.‏ https://doi.org/10.1016/j.freeradbiomed.2018.10.439
  22. Lee, J., Lee, J. H., Lee, S. Y., Park, S. A., Kim, J. H., Hwang, D., ... & Kim, H. S. (2023). Antioxidant iron oxide nanoparticles: their biocompatibility and bioactive properties. International journal of molecular sciences, 24(21), 15901.‏ https://doi.org/10.3390/ijms242115901
  23. Li, J., Wang, L., Li, S., Liang, X., Zhang, Y., Wang, Y., & Liu, Y. (2023). Sustained oral intake of nano-iron oxide perturbs the gut-liver axis. NanoImpact, 30, 100464.‏ https://doi.org/10.1016/j.impact.2023.100464
  24. Mirzajani, F., Rostamzadeh, A., Tahmasian, Z., Obaid, H. S. A., & Motevalli, S. M. (2024). Effects of MRI magnetic iron oxide nanoparticles on the structural and enzymatic properties of liver-related enzymes. Micro and Nano Systems Letters, 12(1), 13.‏ https://doi.org/10.1186/s40486-024-00200-6
  25. Teama, E. A., Mahmoud, A. M., Ali, E. S. A., & El-Mahasen, A. (2023). Response of Faba Bean Seed Yield and its Components to Foliar Spray by Some Growth Regulators. Assiut Journal of Agricultural Sciences, 54(4), 41-51.‏ http://doi.org/10.21931/RB/2023.08.04.70
  26. Shabbir, M. A., Naveed, M., Rehman, S. U., Ain, N. U., Aziz, T., Alharbi, M., ... & Alasmari, A. F. (2023). Synthesis of iron oxide nanoparticles from Madhuca indica plant extract and assessment of their cytotoxic, antioxidant, anti-inflammatory, and anti-diabetic properties via different Nano informatics approaches. ACS omega, 8(37), 33358-33366.‏ https://doi.org/10.1021/acsomega.3c02744
  27. Siddiqui, M. A., Wahab, R., Saquib, Q., Ahmad, J., Farshori, N. N., Al-Sheddi, E. S., ... & Al-Khedhairy, A. A. (2023). Iron oxide nanoparticles induced cytotoxicity, oxidative stress, cell cycle arrest, and DNA damage in human umbilical vein endothelial cells. Journal of Trace Elements in Medicine and Biology, 80, 127302.‏ https://doi.org/10.1016/j.jtemb.2023.127302
  28. Sokovnin, S. Y., Ulitko, M. V., Balezin, M. E., Ilves, V. G., & Sultanova, T. R. (2024). Cytotoxicity and antioxidant activity of iron oxide nanopowders synthesized by radiation-chemical method using different precursors. Ceramics International, 50(20), 39330-39336.‏ https://doi.org/10.1016/j.ceramint.2024.07.305
  29. Uzhytchak, M., Lunova, M., Smolková, B., Jirsa, M., Dejneka, A., & Lunov, O. (2023). Iron oxide nanoparticles trigger endoplasmic reticulum damage in steatotic hepatic cells. Nanoscale Advances, 5(16), 4250-4268.‏ https://doi.org/10.1039/D3NA00071K
  30. Waris, A., Sharif, S., Naz, S., Manzoor, F., Jamil, F., Hussain, M., ... & Park, Y. K. (2023). Hepatotoxicity induced by metallic nanoparticles at the cellular level: A review. Environmental Engineering Research, 28(5).‏ https://doi.org/10.4491/eer.2022.625
  31. Younis, M. I., Xiaofeng, R., Alkanan, Z. T., Altemimi, A. B., Mahmoud, K. F., Siam, S. H., & Abedelmaksoud, T. G. (2024). Enhancing Quality Properties of Fresh Orange Juice through the Addition of Freeze-Dried Cassia javanica Extracts’ Coacervates. Basrah Journal of Agricultural Sciences, 37(1), 15-35.‏ https://doi.org/10.37077/25200860.2024.37.1.02
  32. Zanella, D., Bossi, E., Gornati, R., Bastos, C., Faria, N., & Bernardini, G. (2017). Iron oxide nanoparticles can cross plasma membranes. Scientific Reports, 7(1), 11413.‏ https://doi.org/10.1038/s41598-017-11535-z