Main Article Content

Abstract

An experiment was conducted at an agricultural site affiliated with the Department of Agricultural Research at the Diwaniyah Research Station in Iraq on January 15,2024. The aim was to investigate the effects of three study factors, the first factor, a biofertilizer represented by P. aeruginosa bacteria, symbolized as B, applied at two levels (no addition  of P. aeruginosa B0, addition P. aeruginosa B1),  the second factor, white mushroom waste, symbolized as Ab, added at three levels, (no addition of Ab0, 5 tons h-1 as a second level Ab1, 10 tons h-1 as a third level Ab2), and the third factor, a nanofertilizer symbolized as N, applied at four levels, (no addition N0, 4 kg h-1 nanozinc N1, 2 kg h-1 nanoboron N2, and 1 kg h-1 nanoboron + 2 kg h-1 nanozinc N3). These factors were tested for their effects on the number of the bacteria P. aeruginosa and stimulation of amidase enzyme activity in the first harvest of stevia crop.  The statistically analyzed data indicated that the synergistic effect between the three study factors showed significant superiority through increasing the number of P. aeruginosa bacteria and the activity of the amidase enzyme during the two periods, Considering that for the two periods in view, it recorded (153.7,137.7) ×107  CFU g-1 dry soil and (265.33, 163.00) µg N-NH4+ g-1 soil 2h-1, respectively, while the control  treatment recorded the lowest values during two periods, with (44.3,24.7) CFU g-1 dry soil and (61.33,21.67) µg N-NH4+g-1 soil 2h-1, respectively.

Keywords

Amidease enzyme nano fertilizers organic waste bio fertilizers

Article Details

How to Cite
Al-Budairy, Z. J. . ., & Al-Taweel, L. S. . . (2025). Combined effect of nano boron,zinc, bio-inoculum and white fungus waste on P. aeruginosa numbers and amidase activity in soil. Basrah Journal of Agricultural Sciences, 38(1), 261–277. https://doi.org/10.37077/25200860.2024.38.1.21

References

  1. Abdul Karim, K.A., & Z. Hussein, H. (2022). Biosynthesis of nanoparticles by fungi and the role of nanoparticles in controlling plant pathogenic fungi: A review. Basrah Journal of Agricultural Sciences, 35(1), 243-256. https://doi.org/10.37077/25200860.2022.35.1.18.
  2. Adeleye, A. O., Nkereuwem, M. E., Omokhudu, G. I., Amoo, A. O., Shiaka, G. P., & Yerima, M. B. (2018). Effect of microorganisms in the bioremediation of spent engine oil and petroleum related environmental pollution. Journal of Applied Sciences and Environmental Management, 22(2), 157. https://www.bioline.org.br/abstract?ja18029.
  3. Adeleye, A.O., Yerima, M.B., Nkereuwem, M.E. &Onokebhagbe, V.O. (2017). Biostimulatory Effects of Organic Nutrients on Spent Engine Oil and Hydrocarbon Related Soil Pollution: A Review International Journal of Applied Research and Technology. 6(7): 52-60. http://www.globalauthorid.com/WebPortal/ArticleView?wd=3E6CEA1532D75A330FD4F735C953DCEC45163170A0532F23.
  4. Al-Hasnawi, A. H. & Jarallah, R. Sh. (2024). Effect of Sorghum and sunflower rhizosphere soil and the fertilization type on the total and active carbonate minerals percentage . AIP Conf. Proc. https://doi.org/10.1063/5.0202219.
  5. Ali, S., K.A. Riaz, G. Mairaj, M. Arif, M. & Fida, S. Bibi, (2008). Assessment of different crop nutrient management practices for yield improvement. Australian. Journal of Crop Science, 2(3):150-157. https://www.scirp.org/reference/referencespapers?referenceid=1452305.
  6. Al-Jubouri, E. A. K. & Al-Taweel, L. S. J. (2024). Zeolite, mineral fertilizer and humic acid impact on biomass carbon in soil. AIP Conf. Proc. 3079, 020026 . https://doi.org/10.1063/5.0207604.
  7. Al-Khafaji, M.H., Mohsen, R., & Kazem, M.J. (2024a). Biosynthesis of iron oxide nanoparticles using food source Citrobacter freundii under optimum conditions. Basrah Journal of Agricultural Sciences, 37(2), 249-263. https://doi.org/10.37077/25200860.2024.37.2.19.
  8. Al-Khafaji, M.H., Mohsen, R.H., and Sheikh Faqiri, A.M. (2024b). Biosynthesis of silver nanoparticles as food additives with antimicrobial activity against foodborne enterotoxigenic Klebsiella pneumoniae. Basrah Journal of Agricultural Sciences, 37(1), 278-295. https://doi.org/10.37077/25200860.2024.37.1.21.
  9. Al-Khalidi, R. J.H& Al-Taweel, L. S..( 2024). Effect of plant extracts and humic acid on soil ammonium content and Nitrosomonas numbers in potato-grown soil. IOP Conference: Earth Environ. Sci. https://iopscience.iop.org/article/10.1088/1755-1315/1371/8/082009.
  10. Al-Khalidi,A. M. & Al-Taweel, L. S. J..(2024). Effect of organic and biofertilizers on carbon and nitrogen in biomass in soilsseasoned with broccoli. IOP Conference: Earth Environ. Sci. https://iopscience.iop.org/article/10.1088/1755-1315/1371/8/082008.
  11. Al-Maamouri, H. (2024). Effect of bacterial inoculation and organic fertilization on some soil properties and potato crop growth and its role in sustainable agriculture. Basrah Journal of Agricultural Sciences, 37(2), 264-275. https://doi.org/10.37077/25200860.2024.37.2.20.
  12. Al-Muhammadi, M. D. &Asi Matar. (2020). Bioremediation of soils contaminated with petroleum derivatives and a study of the production of single-cell protein from hydrocarbon waste. Master's thesis. University of Anbar. College of Education for Pure Sciences_Life Sciences.
  13. Al-Rawi, K. M. & Abdul Aziz, M. K. A. (1980). Design and Analysis of Agricultural Experiments. Ministry of Higher Education and Scientific Research. Dar Al-Kutub for Printing and Publishing. University of Mosul. https://www.sciepub.com/reference/166123.
  14. Al-Saadawi, A. M. W. & Al- , L. S. J . (2024a). Effect of fertilizers type on thermodynamic parameters of alkaline phosphatase enzyme in soil planted with maize (Zea mays L.). AIP Conf. Proc. https://pubs.aip.org/aip/acp/article/3079/1/020006/3282573/Effect-of-fertilizers-type-on-thermodynamic.
  15. Al-Saadawi , A. M. W&Al-Taweel , L. S. J . (2024b). Influence of fertilizers type on the kinetic parameters of the inorganic pyrophosphatase enzyme in a soil planted with maize (Zea mays L.). AIP Conf. Proc. https://pubs.aip.org/aip/acp/article/3079/1/020019/3282586/Influence-of-fertilizers-type-on-the-kinetic.
  16. Al-Taweel,L. S. & Al-budairy, Z. J. (2024). Vermicompost, Seaweed Extracts, and Urea Impact on Fungi Numbers in Maize Rhizosphere Soils (Zea mays L.). AIP Conf. Proc. https://pubs.aip.org/aip/acp/article/3079/1/020009/3282576/Vermicompost-seaweed-extracts-and-urea-impact-on.
  17. Andreini, C. ; & Bertini, I. (2012). A bioinformatics view of zinc enzymes. Journal of Inorganic Biochemistry. ; 111: 150–156. https://www.semanticscholar.org/paper/A-bioinformatics-view-of-zinc-enzymes.-Andreini-Bertini/968516d4ded428ee3ca1ab08ba03486c335a18c4.
  18. Bashir, A., Rizwan, M., Ali, S., Idris, M., Rahman, M.Z.U., Qayyum, M.V. (2020). Effect of organic compound amendments and zinc oxide nanoparticles on growth and cadmium accumulation in wheat; a life cycle study. Journal of International Environmental Pollutants Research;27:23926-36. https://pubmed.ncbi.nlm.nih.gov/32301070/.
  19. Black, C.A. (1965). Methods of Soil analysis, Part 2. Chemical and microbiologyical Properties, Am. Soc. Agron. Inc. Madison, Wisconsin, USA. https://www.env.go.jp/air/acidrain/man/soil_veget/refs.pdf.
  20. Bouis, H.E., Hotz, C., McClafferty, B., Meenakshi, J.V., &Pfeiffer ,W.H. (2011). Biofortification: a new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin. ; 32: S31–S40. http://doi.org/10.1177/15648265110321S105. PMID: 21717916.
  21. Bremner, I. M. (1965Inorganic forms of nitrogen. In C. A. Black (1965) Methods of soil analysis. Soc. Of Agron. Inc. U.S.A. https://repository.rothamsted.ac.uk/download/ce88d1f106a4e8446054cd175c65dca6f04ab659674b86f9d64bbd4a75daed69/6492798/bremner-john.pdf.
  22. Chernysheva, V.; Fornasier F, & Borisov, A.V. (2023). Factors for conver sion of the content of double-stranded DNA to carbon of soil microbial biomass. Eurasian Soil Sci 56:672–681. https://doi.org/10.1134/S1064229323600021.
  23. Das, S.K.; Varma, A. (2010). Role of Enzymes in Maintaining Soil Health. In Soil Enzymology; Springer: Berlin/Heidelberg, Germany; pp. 25–42. https://doi.org/10.1007/978-3-642-14225-3_2.
  24. Fanin N., Mooshammer, M., Sauvadet, M., Meng C., Alvarez, G., Bernard, L., Bertrand, I., Blagodatskaya ,E., Bon, L&Fontaine, S. (2022 Soil enzymes in response to climate warming: Mechanisms and feedbacks. Funct. Ecol.; 36:1378–1395. https://doi.org/10.1111/1365-2435.14027.
  25. Fei, Y.; Huang, S.; Zhang, H.; Tong, Y.; Wen, D.; Xia, X.; & Barceló, D. (2020). Response of soil enzyme activities and bacterial communities to microplastic accumulation in acid-grown soil. Science Total Environmental, 707, 135634. http://doi.org/10.1016/j.scitotenv.2019.135634. Epub 2019 Nov 19. PMID: 31761364.
  26. Frankenberger, W. T. & Tabatabai, M. A. (1980). Amidase activity in soils: II. Kinetic parameters. Soil. Science and Society American Joural, 44: 532-536. https://doi.org/10.2136/sssaj1980.03615995004400030019x.
  27. Hiroshi, N. (2003). Molecular basis of bacterial outer membrane permeability. Microbiology and Molecular Biology Reviews.49:1- 32. http://doi.org/10.1128/MMBR.67.4.593-656.2003. PMID: 14665678; PMCID: PMC309051.
  28. Kale, A.P.; & Gawade, S.N. (2016). Studies on nanoparticle induced nutrient use efficiency of fertilizer and crop productivity. Green Chem. Technol. Lett. 2016, 2, 88–92. https://doi.org/10.18510/gctl.2016.226.
  29. King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of laboratory and clinical medicine, 44: 301-307. https://pubmed.ncbi.nlm.nih.gov/13184240/.
  30. Lemanowicz, J., Haddad, S.A., Bartkowiak, A., Lamparski, R. &Wojewódzki, P. (2020). The role of an urban park's tree stands in shaping the enzymatic activity, glomalin content and physicochemical properties Soil Science and Total Environnment.2020;741:140446. http://doi.org/10.1016/j.scitotenv.2020.140446. Epub 2020 Jun 22. PMID: 32887013.
  31. Long, J.Z., Svensson, K.J., Bateman, L. A, Lin, H, Kamenecka T, & Lokurkar, I.A,. (2016). "The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria". Cell. 166 (2): 424–435. http://doi.org/10.1016/j.cell.2016.05.071. PMC 4947008. PMID 27374330. http://doi.org/10.1016/j.cell.2016.05.071. Epub 2016 Jun 30. PMID: 27374330; PMCID: PMC4947008.
  32. Lu, J.; Song, Y.; Liang, J.; Li, J.; Islam, E & Li, T.(2020). Elevated CO2 levels mitigate the negative impact of cerium oxide nanoparticles and chromium oxide nanoparticles on soil bacterial communities by altering microbial carbon utilization. Environ Pollut., 263, 114456. http://doi.org/10.1016/j.scitotenv.2021.146430. Epub 2021 Mar 13. PMID: 33752002.
  33. Maša, P.; Štuhec, E. T.; Tomaž, L. (2024). Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. https://doi.org/10.3390/microorganisms12081521.
  34. Mills, J., Wyborn, N. R., Greenwood J. A., Williams, S. G. & Jones, C.W. (1997). Molecular characterisation of an outer-membrane porin inducible by short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus, Microbiology 143, 23732-2379. http://doi.org/10.1099/00221287-143-7-2373. PMID: 9245819.
  35. Narendhran, S.; Rajiv, P.; & Sivaraj, R. (2016). Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc deficient soil. International Journnal of Pharmacy and Pharmaceutical Sciences., 365–371. https://crimsonpublishers.com/
  36. Nawaz, M. S., Davis, J. W., Wolfram, J. H., & Chapatwala, K. D. (1991). Appl. Biochem. Biotechnol. 28–29, 865–875. https://link.springer.com/article/10.1007/BF02922656.
  37. Panishikal, J., Pratap, J., Nair, R.A, & Krishnankutty R.E.(2021). Performance evaluation of plant probiotics against P. aeruginosa coated with alginate supplemented with salicylic acid and zinc oxide nanoparticles. International Journal of Microbiology.;166:138-43. http://doi.org/10.1016/j.ijbiomac.2020.10.110. Epub 2020 Oct 21. PMID: 33096173.
  38. Peters, N.T; Morlot, C.; Yang, D.C.; Uehara, T. Vernet,T. & Bernhardt, T.G.(2013). Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Molecular Microbiology. 2013; 89:690–701. http://doi.org/10.1111/mmi.12304.
  39. Rabago, A.H.R., Rosales, R.J.G., Gregorio-Balbas, M.B., & Pungtilan, A.L.I. (2024). Use of locally available substrates and their effect on growth and productivity of young cauliflower shoots (Brassica oleracea botrytis group). Basrah Journal of Agricultural Sciences, 37(2), 276-287. https://doi.org/10.37077/25200860.2024.37.2.21.
  40. Raliya, R.; Saharan, V.; Dimkpa, C.; & Biswas, P. (2018). Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. Journal of Agricultural and Food Chemistry.., 66, 6487–6503. http://doi.org/10.1021/acs.jafc.7b02178. Epub 2017 Sep 1. PMID: 28835103.
  41. Šarapatka, B. (2002). Phosphatase activity of eutric cambisols (Uppland, Sweden) in relation to soil properties and farming systems. Acta Agriculturae Bohemica 33(1): 18 – 24. https://old.starfos.tacr.cz/en/result/RIV%2F61989592%3A15310%2F02%3A00001657.
  42. Sarkar, S.; Kumar, R.; Kumar, A.; Kumar, U.; Singh, D.K.; Mondal, S.; Kumawat, N.; Singh, A.K.; Raman, R.K& Sundaram, P.K. (2022). Role of Soil Microbes to Assess Soil Health. In Structure and Functions of Pedosphere; Springer: Berlin/Heidelberg, Germany, 2022; pp. 339–363. http://doi.org/10.31031/rdms.2017.01.000513.
  43. Sendi,H. M. T. M. Mohamed, M. P. Anwar, & H. M. Saud, (2013). “Spent mushroom waste as a media replacement for peat moss in kai-lan (Brassica oleraceavar. Alboglabra) production,” The Scientific World Journal, vol., pp. 1–8. http://doi.org/10.1155/2013/258562. PMID: 24106452; PMCID: PMC3782827.
  44. Sivojiene, D.; Kacergius, A.; Baksiene, E.; Maseviciene, A.; & Zickiene, (2021). The Influence of Organic Fertilizers on the Abundance of Soil Microorganism Communities, Agrochemical Indicators, and Yield in East Lithuanian Light Soils. Plants , 10, 2648. https://doi.org/10.3390/plants10122648.
  45. Tarafdar, J.; Raliya, R.; Mahawar, H.; & Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3, 257–262. https://doi.org/10.1007/s40003-014-0113-y.
  46. Uehara,T., Parzych, K.R., Dinh, T., &Bernhardt TG.(2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. The EMBO Journal. 2010:1–11. http://doi.org/10.1038/emboj.2010.36.
  47. Upadhayay, V.K., Chitara, M.K., Mishra, D., Jha, M.N, Jaiswal A, Kumari, G, Ghosh,S., Patel, V.K., Naitam M..G., Singh, A.K, Pareek, N, Taj, G., Maithani, D, Kumar A, Dasila H, & Sharma A.(2023). Synergistic effect of nanomaterials and plant probiotics in agriculture: A story of a two-way strategy for long-term sustainability. Front Microbiol.;14:1133968. https://doi.org/10.3389/fmicb.2023.1133968.
  48. Valiña, A.L, Mazumder-Shivakumar, D, & Bruice, T.C. (2004). "Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate". Biochemistry. 43 (50): 15657–72. https://doi.org/10.1016/j.biotno.2024.12.003.
  49. Verma, K.K., Joshi, A., Song, X.P., Singh, S., Kumari,A., Arora, J., Singh, S.K., Solanki, M.K., Seth, C.S., & Li, Y.R. (2024). Synergistic interactions between nanoparticles and rhizobacteria that promote plant growth and enhance soil-plant systems: a multigenerational perspective. Front Plant Sci.;15:1376214. https://doi.org/10.3389/fpls.2024.1376214 .
  50. Yakhnina, A.A., McManus, H.R., & Bernhardt T.G. (2015). The cell wall amidase AmiB is essential for P. aeruginosa cell division, drug resistance and viability. Mol Microbiol. Sep;97(5):957-73. http://doi.org/10.1111/mmi.13077: 26032134; PMCID: PMC4646093.. https://pubmed.ncbi.nlm.nih.gov/26032134/.