Main Article Content

Abstract

Hilsa species are broadly described as largely anadromous fish with a large valuable population size. It is well-known as one of the most critical commercial and occurs in marine, estuarine and riverine environments Hilsa shad, Tenualosa ilisha locally known as Sbour, migrates to the freshwater environment of the Shatt Al-Arab River systems for breeding. It was determined the genetic variation in 70 specimens of T. ilisha from four sites at the Shatt Al-Arab River, the mtDNA cytochrome-b gene was selected as a molecular marker for detecting genetic diversity, origin, and divergence of the population through comparing them with 6 samples from different locations at Indo-Pacific. The AMOVA analysis showed that the variation between groups is 60.97% and 39.02% within population indicating statistically significant P value (P<0.05). Furthermore, the maximum likelihood phylogenetic tree showed two main clusters of all T. ilisha groups representing two stocks of separated breeding grounds have a common ancestor.

Keywords

Anadromous Tenualosa ilisha Shatt Al-Arab AMOVA Phylogenetic

Article Details

How to Cite
Abdullah, T. A. ., Javadmanesh, A. ., & Al-Noor, S. S. H. (2022). Genetic Indications for Anadromous Hilsa Shad (Tenualosa ilisha) in Shatt Al-Arab River Using mtDNA Cytochrome B Gene . Basrah Journal of Agricultural Sciences, 35(1), 71–80. https://doi.org/10.37077/25200860.2022.35.1.06

References

  1. Abbas, A. M., & Mohammed, A.-I. Y. (2020). Roughness effect on velocity distribution in selected reach of Shatt al-Arab River. Journal of Engineering, 26(8), 46-58. https://doi.org/10.31026/j.eng.2020.08.04
  2. Abdullah, T., Javadmanesh, A., Safari, O., & Nassiri, M. (2017). [Genetic Diversity For three populations of rainbow trout (Oncorhynchus mykiss) based on sequencing of mT DNA Cyt b gene]. 2nd national conference on science and new technologies in aquatic organisms, 25 May. 2017. Malayer University/Fecality of Natural Resources –Fish Dep. Iran. http://conf.isc.gov.ir/snta95/fa
  3. Al-Dubakel, A. Y. (2011). Commercial fishing and marketing of hilsa shad Tenualosa ilisha (Hamilton-Buchanon, 1822) in Basrah-southern Iraq. Emirates Journal of Food & Agriculture (EJFA), 23(2), 178-186. https://doi.org/10.9755/ejfa.v23i2.6455
  4. Al-Hamad, S. S., Albadran, B. N., & Pournelle, J. R. (2017). Geological history of Shatt Al-Arab River, South of Iraq. International Journal of Science and Research (IJSR), 6(1), 2029-2039. https://doi.org/10.21275/ART20164492
  5. Al-Hassan, L. A. J. (1999). Shad of the Shatt Al-Arab River in Iraq. Shad Journal, 4, 1-4.
  6. Al-Noor, S. S. H. (1998). Reproductive biology of Tenualosa ilisha in the Shatt Al-Arab River. Ph. D. Thesis, University of Basrah, 164pp. (In Arabic).
  7. Al-Yamani, F. Y., Bishop, J. M., Al-Rifaie, K., & Ismail, W. (2007). The effects of the river diversion, Mesopotamian marsh drainage and restoration, and river damming on the marine environment of the northwestern Arabian Gulf. Aquatic Ecosystem Health & Management, 10(3), 277-289. https://doi.org/10.1080/14634980701512384
  8. Arai, T., & Amalina, R. (2014). New record of a tropical shad Tenualosa ilisha (Teleostei: Clupeidae) in Malaysian waters. Marine Biodiversity Records, 7. https://doi.org/10.1017/S1755267214000736
  9. Asaduzzaman, M., Wahab, M. A., Rahman, M. M., Nahiduzzaman, M., Rahman, M. J., Roy, B. K., Phillips, M. J., & Wong, L. L. (2020a). Morpho-genetic divergence and adaptation of anadromous Hilsa shad (Tenualosa ilisha) along with their heterogenic migratory habitats. Frontiers in Marine Science, 7, 554. https://doi.org/10.3389/fmars.2020.00554
  10. Asaduzzaman, M., Igarashi, Y., Wahab, M. A., Nahiduzzaman, M., Rahman, M. J., Phillips, M. J., Huang, S., Asakawa, S., Rahman, M. M., & Wong, L. L. (2020b). Population genomics of an anadromous Hilsa Shad Tenualosa ilisha species across its diverse migratory habitats: Discrimination by fine-scale local adaptation. Genes, 11(1), 46. https://doi.org/10.3390/genes11010046
  11. Behera, B. K., Singh, N. S., Paria, P., Sahoo, A. K., Panda, D., Meena, D. K., Das, P., Pakrashi, S., Biswas, D. K., & Sharma, A. P. (2015). Population genetic structure of Indian shad, Tenualosa ilisha Inferred from variation in mitochondrial DNA sequences. Journal of Environmental Biology, 36(5), 1193.
  12. Coad, B. W. (2010). Freshwater fishes of Iraq. Pensoft Publ, Sofia: 274 pp.+16pls.
  13. Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  14. Gkagkavouzis, K., Papakostas, S., Maroso, F., Karaiskou, N., Carr, A., Nielsen, E. E., Bargelloni, L., & Triantafyllidis, A. (2021). Investigating genetic diversity and genomic signatures of hatchery-induced evolution in gilthead seabream (Sparus aurata) populations. Diversity, 13(11), 563. https://doi.org/10.3390/d13110563
  15. Hossain, M. S., Sharifuzzaman, S. M., Chowdhury, S. R., & Sarker, S. (2016). Habitats across the life cycle of Hilsa shad (Tenualosa ilisha) in aquatic ecosystem of Bangladesh. Fisheries Management and Ecology, 23(6), 450-462. https://doi.org/10.1111/fme.12185
  16. Lateef, Z. Q., Al-Madhhachi, A.-S. T., & Sachit, D. E. (2020). Evaluation of water quality parameters in Shatt Al-Arab, southern Iraq, using spatial analysis. Hydrology, 7(4), 79. https://doi.org/10.3390/hydrology7040079
  17. Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  18. Luhariya, R. K., Lal, K. K., Singh, R. K., Mohindra, V., Punia, P., Chauhan, U. K., Gupta, A., & Lakra, W. S. (2012). Genetic divergence in a wild population of Labeo rohita (Hamilton, 1822) from nine Indian rivers, analyzed through MtDNA cytochrome b region. Molecular Biology Reports, 39(4), 3659-3665. https://doi.org/10.1007/s11033-011-1140-4
  19. Islam, B. N., & Talbot, G. B. (1968). Fluvial migration, spawning, and fecundity of Indus River hilsa, Hilsa ilisha. Transactions of the American Fisheries Society, 97, 350-355. https://doi.org/10.1577/1548-8659(1968)97[350:FMSAFO]2.0.CO;2
  20. Mazumder, S. K., & Alam, M. S. (2009). High levels of genetic variability and differentiation in hilsa shad, Tenualosa ilisha (Clupeidae, Clupeiformes) populations were revealed by PCR-RFLP analysis of the mitochondrial DNA D-loop region. Genetics and Molecular Biology, 32(1), 190-196. www.sbg.org.br. https://doi.org/10.1590/S1415-47572009005000023
  21. Mohamed, A. R. M., & Abood, A. N. (2020). Current status of Iraqi artisanal marine fisheries in northwest of the Arabian Gulf of Iraq. Archives of Agriculture and Environmental Science, 5(4), 457-464. https://doi.org/10.26832/24566632.2020.050404
  22. Mohamed, A. R. M., Hussain, N. A., Al-Noor, S. S., Coad, B. W., & Mutlak, F. M. (2008). Occurrence, abundance, growth and food habits of sbour, Tenualosa ilisha, juveniles in three restored marshes Southern Iraq. Basrah Journal of Agricultural Sciences, 21(Special Issue), 89-99.
  23. Mohindra, V., Dangi, T., Tripathi, R. K., Kumar, R., Singh, R. K., Jena, J. K., & Mohapatra, T. (2019). Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides a resource for osmoregulation studies. Scientific Reports, 9, 16511.
  24. Nasir, N. A. (2016). Distribution and migration of Hilsa Shad (Tenualosa ilisha) in Iraqi Inland water. Mesopotamia Environmental Journal, Special Issue, A, 156-166. http://doi.org/10.13140/RG.2.2.34793.39521
  25. Pillay, S. R., & Rosa, H. (1963). Synopsis of biological data on hilsa: Hilsa ilisha (Hamilton) 1822. Rome: Biology branch, fisheries division, food and agriculture organization of the united nations, FAO fisheries biology Synopsis, no. 25. https://www.worldcat.org/title/synopsis-of-biological-data-on-hilsa-hilsa-ilisha-hamilton-1822/oclc/6427817
  26. Resen, A. K. (2018). The ecological characteristic of the fish assemblage at the southern part of Shatt Al-Arab River. Research Journal of Science and Technology, 10, 2222-2417. https://doi.org/10.5958/2349-2988.2018.00030.X
  27. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  28. Stecher, G., Tamura, K., & Kumar, S. (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4), 1237-1239. https://doi.org/10.1093/molbev/msz312
  29. Tamario, C., Sunde, J., Petersson, E., Tibblin, P., & Forsman, A. (2019). Ecological and evolutionary consequences of environmental change and management actions for migrating fish. Frontiers in Ecology and Evolution, 7, 271. https://doi.org/10.3389/fevo.2019.00271
  30. Tanya, C., & Kumar, R. (2010). Molecular markers and their applications in fisheries and aquaculture. Advances in Bioscience and Biotechnology, 1(4), Article ID: 2855, 11pp. https://doi.org/10.4236/abb.2010.14037
  31. Verma, R., Singh, M., & Kumar, S. (2016). Unraveling the limits of mitochondrial control region to estimate the fine-scale population genetic differentiation in anadromous fish Tenualosa ilisha. Scientifica, 2016, Article ID 2035240, 9pp. https://doi.org/10.1155/2016/2035240