Main Article Content

Abstract

Fish skin, bones and scales are a good source of collagen, for the sake of exploitation these fish wastes of high commercial worth and convert them into food, therapeutic and pharmaceutical products. Therefore, the study included extracting collagen with acetic acid at a concentration 0.5 M and pepsin enzyme 0.1% from fish Cyprinus carpio scales and then producing hydrolyzed collagen protein. Chemical content of the scales was estimated from the percentage of moisture, protein, fat and ash, as it was found (55.36, 35.85, 2.47 and 5.99) %, respectively. The metallic elements represented by (Ca, P, Fe and Zn), they reached (153430, 1887.5, 71.455 and 48.045) µg.g-1. The collagen yield by the two methods mentioned above was 16.40% and 5.30%, respectively. Diagnosis of collagen extracted with acid using FT-IR technique and determination of the active groups in it, the presence of amides A, B, I, II and III was observed at frequencies 3413.39, 2924.52, 1653.66, 1548.56 and 1240 cm-1, respectively. Hydrolysed collagen was prepared using Collagenase enzyme followed by Pepsin enzyme, the highest degree of hydrolysis reached 43.56% after four hours. The electrophoresis of collagen extracted with acid and enzyme was carried out, as three bundles of collagen α1, α2 and β were obtained with weights (126, 100 and 180) KD, respectively.

Keywords

Extracted Collagen Fish scales Diagnosed bioactive compounds Protein hydrolysates

Article Details

How to Cite
Al-Abadi, H. H. M. ., & AI-Temimi, W. K. A. . (2022). Production of Hydrolyzed Collagen from Common Carp Cyprinus carpio L. Scales by Synergistic Enzyme Systems. Basrah Journal of Agricultural Sciences, 35(1), 94–105. https://doi.org/10.37077/25200860.2022.35.1.08

References

  1. Al-Rawi, K. M., & Khalafallah, A. M. (2000). Design and Analysis of Agricultural Experiments. 2nd edition, The Book House for Printing and Publishing. University of Mosul, 488pp. (In Arabic).
  2. AOAC. (2016). Official methods of anaylsis. Retrieved from http://www.eoma.aoac.org/metho ds/info.asp?ID=16264
  3. APHA (American Public Health Association). (1998). Standard Methods for the Examination of water and wastewater. 20th Edition, American Public Health Association, New York.
  4. Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: treatments, environmental impacts, current and potential uses. International Journal of Food Science & Technology, 43(4), 726-745. https://doi:10.1111/j.1365-2621.2006.01513.x
  5. Bet, M. R., Goissis, G., & Lacerda, C. A. (2001). Characterization of polyanionic collagen prepared by selective hydrolysis of asparagine and glutamine carboxyamide side chains. Biomacromolecules, 2(4), 1074-1079. https://doi:10.1021/bm0001188
  6. Bhagwat, P. K., & Dandge, P. B. (2016). Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatalysis and Agricultural Biotechnology, 7, 234-240. https://doi:10.1016/j.bcab.2016.06.010
  7. Chang, G. G., Wang, J. K., Huang, T. M., Lee, H. J., Chou, W. Y., & Meng, C. L. (1991). Purification and characterization of the cytosolic NAD dependent malic enzyme from human cancer cell line. European Journal of Biochemistry, 202(2), 681-688. https://doi:10.1111/j.1432-1033.1991.tb16423.x
  8. Chen, S., Chen, H., Xie, Q., Hong, B., Chen, J., Hua, F., Bai, K., He, J., Yi, R., & Wu, H. (2016). Rapid isolation of high purity pepsin-soluble type i collagen from scales of red drum fish (Sciaenops ocellatus). Food Hydrocolloids, 52, 468-477. https://doi:10.1016/j.foodhyd.2015.07.027
  9. Chuaychan, S., Benjakul, S., & Kishimura, H. (2015). Characteristics of acid- and pepsin-soluble collagens from scale of seabass (Lates calcarifer). LWT -Food Science and Technology, 63(1), 71-76. https://doi:10.1016/j.lwt.2015.03.002
  10. Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal Dairy Science, 66, 1219-1227. https://doi:10.3168/jds.s0022-0302(83)81926-2
  11. Denis, A., Brambati, N., Dessauvages, B., Guedj, S., Ridoux, C., Meffre, N., & Autier, C. (2008). Molecular weight determination of hydrolyzed collagens. Food Hydrocolloids, 22(6) 989-994. https://doi:10.1016/j.foodhyd.2007.05.016
  12. El-Rashidy, A. A., Gad, A. Y., Abu-Hussein, A. E. H. G., Habiba, S. I., Badr, N. A., & Hashem, A. A. (2015). Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. International Journal of Biological Macromolecules, 79, 618-626. https://doi:10.1016/j.ijbiomac.2015.05.019
  13. Fehing, S. P. C. (2016). Extraction of collagen from fish wastes, optimization and characterization. M. Sc. Thesis. University of Tunku Abdul Rahman, Malaysia.
  14. Giménez, B., Alemán, A., Montero, P., & Gómez-Guillén, M. C. (2009). Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, 114(3), 976-983. https://doi:10.1016/j.foodchem.2008.10.050
  15. Hames, B.D. (1998). Gel electrophoresis of proteins. 3rd: A practical approach. Oxford University Press. P. 373pp.
  16. He, L., Lan, W., Wang, Y., Ahmed, S., & Liu, Y. (2019). Extraction and characterization of self-assembled collagen isolated from grass carp and crucian carp. Foods, 8(9), 396-410. https://doi:10.3390/foods8090396
  17. Krimm, S., & Bandekar, J. (1986). Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Advances in Protein Chemistry, 38, 181-364. https://doi.org/10.1016/S0065-3233(08)60528-8
  18. Liu, D., Liang, L., Regenstein, J. M., & Zhou, P. (2012). Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemistry, 133(4), 1441-1448. https://doi:10.1016/j.foodchem.2012.02.032
  19. Mahboob, S. (2014). Isolation and characterization of collagen from fish waste material- skin, scales and fins of Catla catla and Cirrhinus mrigala. Journal of Food Science and Technology, 52(7), 4296-4305. https://doi:10.1007/s13197-014-1520-6
  20. Mahboob, S., Haider, S., Sultana, S., Al- Ghanim, K. A., Al-Misned, F., Al-Kahem Al-Balawi, H. F., & Ahmad, Z. (2014). Isolation and characterisation of collagen from the waste material of two importnt freshwater fish species. The Journal of Animal and Plant Sciences, 24(6), 1802-1810.
  21. Matmaroh, K., Benjakul, S., Prodpran, T., Encarnacion, A. B., & Kishimura, H. (2011). Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chemistry, 129(3), 1179–1186. https://doi:10.1016/j.foodchem.2011.05.099
  22. Minh-thuy, L. T., Okazaki, E., & Osako, K. (2014). Isolation and characterization of acid-soluble collagen from the scales of marine fishes from Japan and Vietnam. Food Chemistry, 149, 264-270. https://doi:10.1016/j.foodchem.2013.10.094
  23. Nagai, T., Yamashita, E., Taniguchi, K., Kanamori, N., & Suzuki, N. (2001). Isolation and characterisation of collagen from the outer skin waste material of cuttlefish (Sepia lycidas). Food Chemistry, 72(4), 425-429. https://doi:10.1016/s0308-8146(00)00249-1
  24. Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66(5), 642-646. https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
  25. Olatunji, O., & Denloye, A. (2017). Temperature-dependent extraction kinetics of hydrolyzed collagen from scales of croaker fish using thermal extraction. Food Science and Nutrition, 5(5), 1015-1020. https://doi:10.1002/fsn3.488
  26. Payne, K. J., & Veis, A. (1988). Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers, 27(11), 1749-1760. https://doi: 10.1002/bip.360271105
  27. Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78(1), 929-958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
  28. Singh, P., Benjakul, S., Maqsood, S., & Kishimura, H. (2011). Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chemistry, 124(1), 97-105. https://doi:10.1016/j.foodchem.2010.05.111
  29. Sionkowska, A., Kozłowska, J., Skorupska, M., & Michalska, M. (2015). Isolation and characterization of collagen from the skin of Brama australis. International Journal of Biological Macromolecules, 80, 605-609. https://doi:10.1016/j.ijbiomac.2015.07.032
  30. Sorushanova, A., Delgado, L. M., Wu, Z., Shologu, N., Kshirsagar, A., Raghunath, R., Mullen, A. M., Bayon, Y., Pandit, A., Raghunath, M., & Zeugolis, D. I. (2018). The collagen suprafamily: From biosynthesis to advanced biomaterial development. Advanced Materials, 31(1), 1801651-1801690. https://doi:10.1002/adma.201801651
  31. Surewicz, W. K., & Mantsch, H. H. (1988). New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 952, 115-130. https://doi:10.1016/0167-4838(88)90107-0
  32. Terzi, A., Gallo, N., Bettini, S., Sibillano,T., Altamura, D., Campa, L., Natali, M. L.,Salvatore, L., Madaghiele, M., Caro, L. D., Valli, L., Sannion, A.,& Giannini, C.(2019). Investigations of processing–induced structural changes in horse type-i collagen at sub and supramolecular levels. Frontiers in Bioengineering and Biotechnology, 7, 303-318. https://doi:10.3389/fbioe.2019.00203
  33. Toppe, J., Albrektsen, S., Hope, B., & Aksnes,A.(2007). Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 146(3), 395–401. https://doi:10.1016/j.cbpb.2006.11.020
  34. Udenigwe, C. C., & Aluko, R. E. (2011). Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Journal of Food Science, 77(1), R11-R24. https://doi:10.1111/j.1750-3841.2011.02455.x
  35. Wang, B., Wang, Y.M., Chi, C.F., Luo, H.Y., Deng, S. G., & Ma, J. Y. (2013). Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Marine Drugs, 11(11), 4641-4661. https://doi:10.3390/md11114641
  36. Wu, J., Kong, L., Zhang, J.,& Chen, W. (2019). Extraction and properties of acid-soluble collagen and pepsin-soluble collagen from silver carp (Hypophthalmichthys molitrix) scales: Prerequisite information for fishery processing waste reuse. Polish Journal of Environmental Studies, 28(4), 2923-2930. https://doi.org/10.15244/pjoes/93742
  37. Yan, M., Li, B., Zhao, X., Ren, G., Zhuang, Y., Hou, H., Zhang, X., Chen, L., & Fan, Y. (2008). Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma). Food Chemistry, 107(4), 1581-1586. https://doi:10.1016/j.foodchem.2007.10.027
  38. Yi, J., De Gobba, C., Skibsted, L. H., & Otte, J. (2016). Angiotensin-I converting enzyme inhibitory and antioxidant activity of bioactive peptides produced by enzymatic hydrolysis of skin from grass carp (Ctenopharyngodon idella). International journal of food properties, 20(5), 1129-1144. https://doi:10.1080/10942912.2016.1203932
  39. Zhang, J., Duan, R., Ye, C., & Konno, K. (2010). Isolation and characterization of collagens from scale of silver carp (Hypophthalmichthys molitrix). Journal of Food Biochemistry, 34(6), 1343-1354. https://doi: 10.1111/j.1745-4514.2010.00439.x
  40. Zhang, M., Liu, W., & Li, G. (2009). Isolation and characterization of collagens from the skin of largefin longbarbel catfish (Mystus macropterus). Food Chemistry, 115(3), 826-831. https://doi.org/10.1016/j.foodchem.2009.01.006