Main Article Content

Abstract

This study aimed to demonstrate the activity of nanomaterials, the mechanisms of their biosynthesis, methods of measurement, and the factors that roles their biosynthesis by fungi. Moreover, focusing on their impact on host resistance against fungal pathogens. Nanometerials have been considered as one of scientific research priorities due to their new features (melting temperature, binding energy, electronic structure and catalytic activity, magnetic properties, dissolving temperature, and hardness). The performance and efficiency of nanomaterials compared to their normal state has been proven in many fields such as health care, agriculture, transportation, energy, information and communication technology. Many mechanical, chemical and physical methods were implemented to produce nanoparticles, which are considered as unsafe, expensive and environmentally dangerous. Therefore, researchers interested in biosynthesis of nanoparticles using fungi, bacteria or plants systems to make the process environmentally and economically safe. Furthermore, microorganisms such as yeasts, fungi and bacteria efficiency of converting inorganic ions into metallic nanomaterials was well studied. In agriculture, studies have confirmed impact of nanoparticles in improving plant productivity and pathogens resistance in different approaches like direct spraying on plants, soil, and stored fruits in a curative and preventive modes.

Keywords

Biosynthesis nanoparticles Fungi

Article Details

How to Cite
K. Abdul-Karim, E. ., & Z. Hussein, H. . (2022). The Biosynthesis of Nanoparticles by Fungi and the Role of Nanoparticles in Resisting of Pathogenic Fungi to Plants: A Review. Basrah Journal of Agricultural Sciences, 35(1), 243–256. https://doi.org/10.37077/25200860.2022.35.1.18

References

  1. Abdel Rahim, K., Mahmoud, S. Y., Ali, A. M., Almaary, K. S., Mustafaa, A. E. Z. M. A., & Husseiny, S. M. (2017). Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi Journal Biological Sciences, 24, 208-216. https://doi.org/10.1016/j.sjbs.2016.02.025
  2. Abdul-Karim, E. K. (2020). Morphological and Molecular study of the fungus Neoscytalidium spp. caused branches wilt on some hostes and control. Ph. D. Thesis. Faculty of Agriculture Engineering Sciences. University of Baghdad, 177pp. (In Arabic)
  3. Abdul-Karim, E. K. (2021). The efficiency of magnesium oxide, nano magnesium oxide and cinnamon alcoholic extract in controlling Fusarium oxysporum f. sp. lycopersici which causes Fusarium wilt on tomato. International Journal of Agricultural and Statistical Sciences, 17, 1611-1618.
  4. https://connectjournals.com/03899.2021.17.1611
  5. Aguilar-Mendez, M. A., Martinez, E. S., Ortega-Arroyo, L., Cobian-portillo, G., & Sanchez-Espindola, E. (2011). Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum glorsporioides. Journal Nanopart Research, 13, 2525-2532. https://doi.org/10.1007/s11051-010-0145-6
  6. Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2002). Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. Journal of the American Chemical Society, 124, 12108-12109.
  7. http://doi.org/10.1021%2Fja027296o
  8. Ahmed, A., Mukherjee, P. Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28, 313-331. https://doi.org/10.1016/S0927-7765(02)00174-1
  9. Ahmed, A. I. S. (2017). Chitosan and silver nanoparticles as control agents of some faba bean spot diseases. Journal of Plant Pathology and Microbiology, 8, 1-7. https://doi.org/10.4172/2157-7471.1000421
  10. Ahmeda, M. H. S., Ahmida, N. H. S. & Ahmeida, A. A. (2017). Introduction to nanotechnology: Definition, terms, occurrence and applications in environment. Libyan International Medical University Journal, 2, 12-26. http://doi.org/10.21502/limuj.003.02.2017
  11. Ali, A. M., Fawze, R. S., & Abd, M. M. (2018). Test the efficiency of magnesium oxide nanoparticles in Rhizoctonia solani fungus control in eggplant. International Journal of Science and Research, 6, 101-104.
  12. Alhilfi, A. Z. A., Swadi, W. A., & Ahmed, A. M. (2021). Preparation and Characterization of Oil Nanoemulsion Formulations of Beauveria bassiana (Bals.-Criv.). Basrah Journal of Agricultural Sciences, 34, 75-87. https://doi.org/10.37077/25200860.2021.34.2.06
  13. Al-Musawi, Z. F. H. & Al-Saadi, N. H. M. (2021). antitumor activities of biosynthesized silver nanoparticles using Dodonaea viscosa (L.) leaves extract. Basrah Journal of Agricultural Sciences, 34, 42-59. https://doi.org/10.37077/25200860.2021.34.2.04
  14. Al-Tamimi, Q. A. A., Hussein, H. Z., & AIi, A. M. (2020). The efficacy test of nano chitosan and phylex in resistance early blight disease in tomato caused by Alternaria Solani fungus. International Journal of Pharmaceutical Research, 12, 2209-2220. https://doi.org/10.31838/ijpr/2020.12.01.345
  15. Armendariz, V., Herrera, I., & Peralta Videa, J. R. (2004). Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal Nanoart. Research, 6, 377-382. https://doi.org/10.1007/s11051-004-0741-4
  16. Asmathunisha, N., Kathiresan, K. A. (2013). Review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces B: Biointerfaces. 103, 283-287. https://doi.org/10.1016/j.colsurfb.2012.10.030
  17. Bakhi, M. S., Mahanty, S., & Chaudhuri, P. (2017). Fungi-Mediated Biosynthesis of Nanoparticles and Application in Metal Sequestration. 423-434. In Das, S. & Dash, H. R. (Eds.). Handbook of Metal–Microbe Interactions and Bioremediation. CRC Press, Taylor & Francis Group, N.Y. 837pp. https://doi.org/10.1201/9781315153353
  18. Bakshi M., Singh, H. B., & Abhilash, P. C. (2014). The unseen impact of nanoparticles: More or less? Current. Science, 106, 350-352. https://www.jstor.org/stable/24099889
  19. Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, B. D., Prabhakar, B. K., & Venkataraman, V. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B: Biointerfaces, 68, 88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022
  20. Bar, H.; Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., & Misra, A. (2009a). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339, 134-139. https://doi.org/10.1016/j.colsurfa.2009.02.008
  21. Bar, H.; Bhui, D.K., Sahoo, G.P., Sarkar, P., Pyne, S. & Misra, A. (2009b). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 348, 212-216. https://doi.org/10.1016/j.colsurfa.2009.07.021
  22. Baker, S., Harini, B.P., Rakshith, D., & Satish, S. (2013). Marine microbes: Invisible nanofactories. Journal Pharmaceutical Research, 6, 383-388. http://doi.org/10.1016/j.jopr.2013.03.001
  23. Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160-164. https://doi.org/10.1016/j.colsurfb.2005.11.026
  24. Binupriya, A. R., Sathishkumar, M., & Yun, S. I. (2010). Biocrystallization of silver and gold ions by inactive cell filtrates of Rhizopus stolonifer. Colloids and Surfaces B: Biointerfaces, 79, 531-534. https://doi.org/10.1016/j.colsurfb.2010.05.021
  25. Castro-Longoria, E., Vilchis Nestor, A. R., & Avalos- Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces. 83, 42-48. https://doi.org/10.1016/j.colsurfb.2010.10.035
  26. Chen, J. C., Lin, Z. H. & Ma, X. X. (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3·2883 with silver nitrate. Letters in Applied Microbiology, 37, 105-108. https://doi.org/10.1046/j.1472-765x.2003.01348.x
  27. Darroudi, M., Ahmad, M. B., Zamiri, R., Zak, A. K., Abdullah, A. H., & Ibrahim, N. A. (2011).Time-dependent effect in green synthesis of silver nanoparticles. International Journal Nanomedicine, 6, 677-681. https://doi.org/10.2147/ijn.s17669
  28. Dhillon, G.S., Brar, S. K., Kaur, S., & Verma, M. (2012). Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Critical Reviews Biotechnology, 32, 49-73. https://doi.org/10.3109/07388551.2010.550568
  29. Duran N., Marcato, P. D., Alves, O. L., de Souza, G. I. H., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3, 1-7. https://doi.org/10.1186%2F1477-3155-3-8
  30. Dutta, J. (2012). Promising Future of Nanotechnology. Knowledge Development. Ministry of Education, Sultanate of Oman. 21pp. (Translated to Arabic by Muhammad Omar Aqeed).
  31. El-Argawy, E., Rahhal, M. M. H., El-Korany, A., Elshabrawy, E. M., & Eltahan, R. M. (2017). Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Behiera Governorate. Journal of Plant Pathology, 11, 35-47. https://doi.org/10.3923/ajppaj.2017.35.47
  32. Elgorban, A. M., Al-Rahmah, A. N., Sayed, R. S., Hirad, A., Mostafa, A. A., & Bahkali, A. H. (2016). Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnology Biotechnological Equipment, 30, 299-304. https://doi.org/10.1080/13102818.2015.1133255
  33. Fayaz, A. M., Balaji, K., Girilal, M., Kalaichelvan, P. T. & Venkatesan, R. (2009). Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry, 57, 6246-6252. https://doi.org/10.1021/jf900337h
  34. Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N. & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Material and Bioenergy, 2, 243-247. https://doi.org/10.1166/jbmb.2008.401
  35. Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine, 5, 382-386. https://doi.org/10.1016/j.nano.2009.06.005
  36. Gericke, M., & Pinches, A. (2006a). Microbial production of gold nanoparticles. Gold Bulletin, 39, 22-28. https://doi.org/10.1007/BF03215529
  37. Gericke, M., & Pinches, A. (2006b). Biological synthesis of metal nanoparticles. Hydrometallurgy, 83, 132-140. https://doi.org/10.1016/j.hydromet.2006.03.019
  38. Gul, H.T., Saed, S. H., Khan, F. Z. A. & Manzoor, A. (2014). Potentiol of nanotechnology in agriculture and crop protection: A review. Applied Sciences and Business Economics, 1, 23-28.
  39. Hussain, A. H., & Hussein, H. Z. (2020). Evaluation of Agaricus sp. and Pleurotus sp. extracts efficiency in Aspergillus flavus growth inhibition and aflatoxin B1 reduction. Systematic Reviews in Pharmacy, 11, 564-569. http://doi.org/10.31838/srp.2020.10.84
  40. Hussen, F. A., & Hussein, H. Z. (2016). Evaluation of the antifungal effect of nanoparticles (magnesium oxide, silver) and chemical (phylax) on Fusarium solani fsp Cucurbitae, pathogenic melon. International Journal of Agriculture Innovations and Research, 5, 276-282.
  41. Jain, N., Bhargava, A., Majumdar, S., Tarafdar, J. C., & Panwar, J. (2010). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 3, 635-641. https://doi.org/10.1039/c0nr00656d
  42. Jha, A. K., & Prasad, K. (2010). Chapter 2: Understanding biosynthesis of metallic/oxide nanoparticles: A biochemical perspective. 23-40. In: Kumar S. A., Thiagarajan, S, & Wang, S.-F. (Eds.). Biocompatible nanomaterials: Synthesis, characterization and applications. NOVA Science Publishers, New York.
  43. Jha, A. K., & Prasad, K. (2016). Chapter: Understanding mechanism of fungus mediated nanosynthesis: A molecular approach. Pp., 1-23. In: Prasad, R. (Ed.). Advances and applications through fungal nanobiotechnology. Fungal Biology. Springer, Cham. 353pp.http://doi.org/10.1007/978-3-319-42990-8_1
  44. Joerger, R., Klaus, T. & Granqvist, C. G. (2000) .Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Advanced Materials Research, 12, 407-409. https://doi.org/10.1002/(SICI)1521-4095(200003)12:6%3C407::AID-ADMA407%3E3.0.CO;2-O
  45. Khan, N. T., Jameel, N., & Rehman, S. U. A. (2016). Optimizing Physioculture conditions for the synthesis of silver nanoparticles from Aspergillus niger. Journal Nanomed Nanotechnology, 7, 5. https://doi.org/10.4172/2157-7439.1000402
  46. Kashyap, P. L., Kumar, S., Srivastava, A. K. & Sharma, A. K. (2013). Myconanotechnology in agriculture: A perspective. World Journal Microbiol Biotechnol, 29, 191-207. https://doi.org/10.1007/s11274-012-1171-6
  47. Kathiresan, K., Manivannan, S., Nabeel, A. M., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus Penicillum fellutanum isolated from coastal mangrove sediment. Colloids Surfaces B: Biointerfaces, 71, 133-137. https://doi.org/10.1016/j.colsurfb.2009.01.016
  48. Kathiresan, K., Alikunhi, N. M., Pathmanaban, S., Nabikhan, A., & Kandasamy, S. (2010). Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Canadian Journal of Microbiology, 56, 1050-1059. https://doi.org/10.1139/w10-094
  49. Khaydarov, R. R., Khaydarov, R. A., Evgrafova, S., & Estrin, Y. (2012). Using silver nanoparticles as an antimicrobial agent. Pp, 169-177. In Mikhalovsky, S., & Khajibaev, A. (Eds.). Biodefence. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0217-2_18
  50. Mala, G., & Rose, C. (2014). Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. Journal of Biotechnology, 170, 73-78. https://doi.org/10.1016/j.jbiotec.2013.11.017
  51. Min, J.S., Kim, S. W., Jung, J. H., & Lamasal, K. (2009). Effect of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathology Journal, 25, 376-380. https://doi.org/10.5423/PPJ.2009.25.4.376
  52. Mohammadi, B., & Salouti, M. (2015). Extracellular biosynthesis of silver nanoparticles by Penicillium chrysogenum and Penicillium expansum. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-MetalChemistry, 45, 844-847 https://doi.org/10.1080/15533174.2013.862640
  53. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10, 507-517. http://doi.org/10.1007/s11051-007-9275-x
  54. Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., & Ghatak, J. (2008). Green synthesis of highly stabilized nanocrystalline silver prticles by a non- pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19. https://doi.org/10.1088/0957-4484/19/7/075103
  55. Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1-13. https://doi.org/10.1016/j.cis.2010.02.001
  56. Ngoc, U. T. P., & Nguyen, D. H. (2018). Synergistic antifungal effect of fungicide and chitosan-silver nanoparticles on Neoscytalidium dimidiatum. Green Process Synthesis, 7, 132-138. http://doi.org/10.1515/gps-2016-0206
  57. Oh, S. D., Lee, S., Choi, S. H., Lee, I. S., & Lee, Y. M. (2006). Synthesis of Ag and Ag-Sio2 nanopartecles by y-irradiaton and their antibacterial and antifungul efficiency against Salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 275, 228-233. https://doi.org/10.1016/j.colsurfa.2005.11.039
  58. Prasad, R., Kumar, V., Kumar, M., & Shanquan, W. (2018). Fungal nanobionics: principles and applications. Springer, Singapore. 316pp. https://doi.org/10.1007/978-981-10-8666-3
  59. Rai, M., Gade, A., & Yadav, A. (2011). Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. 1-14. In Rai M., & Duran, N. (Eds.). Metal nanoparticles in microbiology. Springer, Berlin, Heidelberg. 306pp. https://doi.org/10.1007/978-3-642-18312-6_1
  60. Rai, M., Yadava, A., & Gadea, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  61. Rajakumar, G., Rahumana, A. A., Roopan, S. M., Khanna, V. G. Elangoa, G., Kamara, J. C., Zahir, A. A., & Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 23-29. https://doi.org/10.1016/j.saa.2012.01.011
  62. Rajan, A., Cherian, E., & Baskar, G. (2016). Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. International Journal of Molecular Sciences Technology, 1, 52-57. https://nebula.wsimg.com/78599ca81f69a070e501c4e7dac2ffe8?AccessKeyId=7F4D485B7198C0BD2695&disposition=0&alloworigin=1
  63. Ramalingmam, P., Muthukrishnan, S., & Thanagaraj, P. (2015). Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. Journal Nanosci Nanoeng, 1, 241-247.
  64. Ray, S., Sarkar, S., & Kund, S. (2011). Extracellular biosynthesis of silver nanoparticles using the mycorrhizal mushroom Tricholoma crassum (Berk) its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Digest Journal of Nanomaterials and Biostructures, 6(3), 1289-1299.
  65. Roy, S., Mukherjee, T., Chakraborty, S., & Das, T. K. (2013). Biosynthesis, characterization and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Digest Journal of Nanomaterials and Biostructures. 8, 197-205.
  66. Sahab, A. F., Waly, A. I., Sabbour, M. M., & Nawar, L. S. (2015). Synthesis, antifungal and insecticidal potential of Chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. International Journal of Chemistry Technology Research, 8, 589-598. http://doi.org/10.13140/RG.2.1.1198.8325
  67. Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677-683. https://doi.org/10.1016/j.ijbiomac.2013.10.012
  68. Sanghi, R., & Verma, P. (2009). Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresource Technology, 100, 501-504. https://doi.org/10.1016/j.biortech.2008.05.048
  69. Sarkar, J., Dey, P., Saha, S., & Acharya, K. (2011). Mycosynthesis of selenium nanoparticles. Micro Nano Letters, 6, 599-602. https://doi.org/10.1049/mnl.2011.0227
  70. Sassolas, A., Blum, L. J., & Bouvier, B. D. (2011). Immobilizationstrategies develop enzymatic biosensors. Biotechnology Advances, 3, 489-511. https://doi.org/10.1016/j.biotechadv.2011.09.003
  71. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83-96. https://doi.org/10.1016/j.cis.2008.09.002
  72. Shankar, S. S., Ahmad, A., Pasrichaa, R., & Sastry, M. (2003). Bioreduction of chloroaurate ions by Geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13, 1822-1826. https://doi.org/10.1039/B303808B
  73. Sheikhloo, Z., & Salouti, M. (2011). Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium Chrysogenum. International Journal of Nanoscience and Nanotechnology, 7, 102-105.
  74. Sheikhloo, Z., Salouti, M., Farahmandkia, Z., Mahmazi, S., & Einlou, A. (2012). Intra-extracellular biosynthesis of gold nanoparticles by fungus Rhizopus oryza. Journal of Zanjan University of Medical Sciences and Health Services, 20, 47-56. http://zums.ac.ir/journal/article-1-1728-en.html
  75. Sparks, T. C., & Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122-128. https://doi.org/10.1016/j.pestbp.2014.11.014
  76. Soni, N., & Prakash, S. (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitology Research, 110, 175-184. https://doi.org/10.1007/s00436-011-2467-4
  77. Suryadi, Y., Priyatno, T. P., Samudra, I. M., Susilowati, D., Sriharyani, T. S., & Syaefudin, (2017). Control of anthracnose disease (Colletotrichum gloeosporioides) Using nano chitosan hydrolyzed by chitinase derived from Burkholderia cepacia Isolate E76. Journal AgroBiogen, 13, 111-122. http://124.81.126.59/handle/123456789/7718
  78. Tawfeeq, A. T. (2014). Diluted concentrations of large (above one hundred nanometer) silver nanoparticles inhibited the growth of different types and origin of cancer cells. Iraqi Journal of Cancer and Medical Genetics, 7, 69-76.
  79. Tsuji, T., Iryo, K., Watanabe, N., & Tsuji, M. (2002). Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied Surface Science, 202, 80-85. https://doi.org/10.1016/S0169-4332(02)00936-4
  80. Uddin, L., Adyanthaya, S., Syed, A., Selvaraj, K., Ahmed, A., & Poddar, P. (2008). Structure and microbial synthesis of sub 10 nm Bi2O3 nanocrystals. Journal of Nanoscience and Nanotechnology, 8, 3909-3913. https://doi.org/10.1166/jnn.2008.179
  81. Vahabi, K., Mansoori, G. A., & Karimi, S. (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A route for large scale production ofAgNPs). Insciences Journal, 1, 65-79. https://doi.org/10.5640/insc.010165
  82. Varshney, R., Mishra, A. N., Bhadauria, S., & Gaur, M. S. (2009). A novel microbial route to synthesize silver nano particles using fungus Hormoconis resinae. Digest Journal of Nanomaterials and Biostructures, 4, 349-355.
  83. Vetchinkina, E. P., Loshchinina, E. A., Burov, A. M., Dyykman, L. A., & Nikitina, V. E. (2014). Enzymatic formation of gold nanoparticles by submerged culture of the basidiomy cete Lentinus edodes. Journal of Biotechnology, 182, 37-45. https://doi.org/10.1016/j.jbiotec.2014.04.018
  84. Xing, K., Liua, Y., Shena, X., Zhub, X., Lic, X., Miaoa, X., Fenga, Z., Penga, X., & Qind, S. (2017). Effect of O-chitosan nanoparticles on the development andmembrane permeability of Verticillium dahlia. Carbohydrate Polymers, 165, 334-343. https://doi.org/10.1016/j.carbpol.2017.02.063
  85. Xu, Z. P., Zeng, Q.H., Lu, G. Q., & Yu, A. B. (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61, 1027- 1040. https://doi.org/10.1016/j.ces.2005.06.019
  86. Yadav, A., Kon, K., Kratosova, G., Duran, N., Ingle, A. P., & Rai, R. (2015). Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: Progress and key aspects of research. Biotechnology Letters, 37, 2099-2120. https://doi.org/10.1007/s10529-015-1901-6
  87. Zhang, X., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reactionrates. Chemosphere, 82, 489-494. https://doi.org/10.1016/j.chemosphere.2010.10.023