Main Article Content


Papaya is a heterozygous plant commonly cultivated by seed but, unfortunately, they are not true to type. Moreover, the hybrid seed varieties like the Red Lady are very highly expensive. Hence, tissue culture techniques offer an alternative method to produce a million clones within a short period and a reasonable price. Thus, the current study aimed to optimize the shoot multiplication rate of papaya (Carica papaya L. cv. Red Lady) in vitro. Five concentrations of sucrose (10, 20, 30, 40, and 50 g.L-1) were applied for the papaya shoot proliferation. Results demonstrated that the 30 g.L-1 sucrose was significantly superior in the rate of shoot numbers (4.1 shoots. explant-1), shoot length (0.90 cm), (2.7 leaves. shoot-1), leaf area (1.40 cm2) and fresh weight (0.192 g) in compared with other sucrose treatments. Whereas, the 40 g.L-1 sucrose treatment was significantly superior in dry weight of shoot compared to the other treatments, which recorded 0.058 g. While the treatment of 10 g.L-1 sucrose recorded the lowest values in shoot numbers, length, and dry weight. Current study conclude that the 30 g.L-1 sucrose is the best concentration treatment that must be used in papaya micropropagation, where it gives  the maximum rate  of shoot numbers and other morphological traits.


6-benzylaminopurine Explant In vitro Shoot multiplication Tissue culture

Article Details

How to Cite
Al-Drisi, E. E. ., Ibrahim, M. A. ., & Jasim, A. M. (2022). Impact of Different Sucrose Concentrations on Shoot Multiplication of Papaya (Carica papaya L.) Cultured in vitro . Basrah Journal of Agricultural Sciences, 35(2), 240–247.


  1. Ahmad, T., Abbasi, N. A., Hafiz, I. A., & Ali, A. (2007). Comparison of sucrose and sorbitol as main carbon energy sources in microprogation of peach rootstock GF-677. Pakistan Journal of Botany, 39(4), 1269.
  2. Al-Shara, B., Rosna, M. T., & Kamaludin, R. (2018). Biotechnological methods and limitations of micropropagation in papaya (Carica papaya L.) production: A review. Journal Animal and Plant Sciences, 28(5), 1208-1226.
  3. Baeza, G., Correa, D., & Salas, C. (1990). Proteolytic enzymes in Carica candamarcensis. Journal of the Science of Food and Agriculture, 51(1), 1-9.
  5. Burns, P., Saengmanee, P., & Doung-ngern, U. (2022). Papaya: The Versatile Tropical Fruit. Pp, 1-14. In Khan, M. S. (Ed.). Tropical Plant Species.
  7. Fernando, J. A., Melo, M., Soares, M. K., & Appezzato-da-Glória, B. (2001). Anatomy of somatic embryogenesis in Carica papaya L. Brazilian Archives of Biology and Technology, 44(3), 247-255.
  9. Fuentes, S. R., Calheiros, M. B., Manetti-Filho, J., & Vieira, L. G. (2000). The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell, Tissue and Organ Culture, 60(1), 5-13.
  11. Haque, M. S., Wada, T., & Hattori, K. (2003). Effects of sucrose, mannitol and KH2PO4 on proliferation of root tip derived shoots and subsequent bulblet formation in garlic. Asian Journal of Plant Sciences, 2(12), 903-908.
  13. Hazarika, B. N., Parthasarathy, V. A., Nagaraju, V., & Bhowmik, G. (2000). Sucrose induced biochemical changes in in-vitro microshoots of Citrus species. Indian Journal of Horticulture, 57(1), 27-31.
  15. Hilae, A., & Te-chato, S. (2005). Effects of carbon sources and strength of MS medium on germination of somatic embryos of oil palm (Elaeis quineensis Jacq.). Songklanakarin Journal of Science Technology, 27(3), 629-635.
  16. Jain, N., & Babbar, S. B. (2003). Effect of carbon source on the shoot proliferation potential of epicotyl explants of Syzygium cuminii. Biologia Plantarum, 47(1), 133-136.
  18. Javed, F., & Ikram, S. (2008). Effect of sucrose induced osmotic stress on callus growth and biochemical aspects of two wheat genotypes. Pakistan Journal Botany, 40, 1487-1495.
  19. Kabir, A. H., Bari, M. A., Huda, A. K. M. N., Rezvy, M. A., & Mahfuz, I. (2007). Effect of growth regulators and carbon sources on axillary shoots proliferation from shoot-tip explant and successful transplantation of papaya (Carica papaya L.). Biotechnology, 6(2), 268-272.
  21. Kadota, M., Imizu, K., & Hirano, T. (2001). Double-phase in vitro culture using sorbitol increases shoot proliferation and reduce hyperhydricity in Japanese pear. Scientia Horticulturae, 89(3), 207-215.
  23. Kanth, N., Singh, A. K., & Syamal, M. M. (2017). Effect of Media pH on Shoot Proliferation of Papaya (Carica papaya L.). International Journal of Current Microbiological Applied Science, 6(10), 1633-1637.
  25. Lai, C. C., Yeh, S. D., & Yang, J. S. (2000). Enhancement of papaya axillary shoots proliferation in vitro by controlling the available ethylene. Botanical Bulletin of Academia Sonica, 41. 203-212.
  27. Mendoza, M. & Kaeppler, H. (2002). Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cellular & Developmental Biology – Plant, 38, 39-45.
  29. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
  31. Patel, J. R., Patel, R. M., & Patel, S. R. (2013). Factors affecting in-vitro establishment and growth of papaya (Carica papaya L.) var. Red Lady. Agres - an international e-journal., 2(3), 332-341.
  32. Ragavendran, C., & Natarajan, D. (2017). Role of plant tissue culture for improving the food security in India: A review update. Pp, 231-262. In Dhanarajan, A. (Ed.). Sustainable Agriculture Towards Food Security. Springer, Singapore.
  34. Schmildt, O., Netto, A. T., Schmildt, E. R., Carvalho, V. S., Otoni, W. C., & Campostrini, E. (2015). Photosynthetic capacity, growth and water relations in ‘Golden’papaya cultivated in vitro with modifications in light quality, sucrose concentration and ventilation. Theoretical and Experimental Plant Physiology, 27(1), 7-18.
  36. Silva, J. A. T. (2004). The effect of carbon source on in vitro organogenesis of chrysanthemum thin cell layers. Bragantia, 63(2), 165-177.
  38. Ślesak, H. Skoczowski, A., & Przywara, L. (2004). Exogenous Carbohydrate Utilisation by Explants of Brassica napusltt; Cultured in vitro. Plant Cell Tissue and Organ Culture, 79, 45-51.
  39. https://10.1023/B:TICU.0000049448.95969.6d
  40. Snedecor, G. W., & Cochran, W. G. (1989). Iowa State University Press; Ames, IA: Statistical Methods: 491pp.
  42. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2010). Plant Physiology. No. 5th Edn. Sinauer Associates Incorporated, 782pp.
  44. Tsai, S. F., Yeh, S. D., Chan, C. F., & Liaw, S. I. (2009). High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of transgenic papaya lines. Plant Cell, Tissue and Organ Culture (PCTOC), 98(2), 157-164.
  46. Wu, K., Zeng, S., Chen, Z., & Duan, J. (2012). In vitro mass propagation of hermaphroditic Carica papaya cv. Meizhonghong. Pakistan Journal of Botany, 44(5), 1.
  47. Yaseen, M., Ahmed, T., Abbasi, N. A., & Hafiz, I. A. (2009). In vitro shoot proliferation competence of apple rootstocks M. 9 and M. 26 on different carbon sources. Pakistan Journal of Botany, 41(4), 1781-1795.
  48. Yaseen, M., Ahmad, T., Sablok, G., Standardi, A., & Hafiz, I. A. (2013). Role of carbon sources for in vitro plant growth and development. Molecular Biology Reports, 40(4), 2837-2849.
  50. Yildiz, M., Onde, S., & Ozgen, M. (2007). Sucrose effects on phenolic concentration and plant regeneration from sugarbeet leaf and petiole explants. Journal of Sugar Beet Research, 44(1/2), 1-15.