Main Article Content

Abstract

This study aimed to identify prevalent pathogens of a caused moldy core of postharvest apple fruits and the efficiency of essential oils (EO) of clove (Syzygium aromaticum), eucalyptus (Eucalyptus globulus), sage (Salvia officinalis), and thyme (Thymus vulgaris), and Trichoderma harzianum filtrate to inhibit pathogens growth of Alternaria alternata, Botrytis cinerea, and Penicillium griseofulvum. The examined pathogens are recognized dependent on morphological and also molecular identification. In vivo, clove EO and T. harzianum filtrate were strongly restricted decay area on fruits with 82.36% and 81.69%, respectively when applied as direct inhibition. Growth of all examined pathogens was entirely stopped on fruits treated with both clove and thyme oils at 10%. The results also illustrated that T. harzianum filtrate and EOs exhibited considerable growth inhibition of B. cinerea and ranged between 86.53% and 100%. The lowest inhibitory potential of EOs 47.95% and 75.9% were observed with P. griseofulvum. T. harzianum filtrate was the most effective biocontrol that inhibited fruit decay by 64.5% followed by 45.9%, 38.6%, 37.5%, and 35.9% when utilized EOs of thyme, sage, eucalyptus, and clove, respectively. The growth of both pathogens A. alternata and B. cinerea depressed with up to 90% using T. harzianum filtrate followed by EOs of eucalyptus and thyme. Whereas fruits inoculated with P. griseofulvum were not frustrated when applied to each EOs or T. harzianum. Their systemic induction was restricted between 3.16% and 23.82%.

Keywords

Apple decay Clove Eucalyptus PCR Sage Thyme

Article Details

How to Cite
Yousif, A. A. ., & Hassan, W. A. . (2023). Molecular Identification of Postharvest Moldy Core Pathogens on Apple and Application of Biocontrol Products of Essential Oils (EOs) and Trichoderma harzianum. Basrah Journal of Agricultural Sciences, 36(1), 1–15. https://doi.org/10.37077/25200860.2023.36.1.01

References

  1. Abo-El-Seoud, M.A., Sarhan, M. M., Omar, A. E., & Helal, I. (2005). Biocide’s formulation of essential oils has antimicrobial activity. Archives of Phytopathology and Plant Protection, 38(3), 175-184.
  2. https://doi.org/10.1080/03235400500094340
  3. Adams, R. P. (2007). Identification of Essential Oils Components by Gas Chromatography/Quadruple Mass Spectroscopy, 4th edition. Allured Publishing Corporation, Carol Stream, Illinois, USA. 804pp.
  4. Andrew, M., Peever, T. L., & Pryor, B. M. (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia, 101, 95-109.
  5. https://doi.org/10.3852/08-135
  6. Anjum, T. & Akhtar, N. (2012). Antifungal activity of essential oils extracted from clove, cumin, and cinnamon against blue mold disease on citrus fruit. International Conference on Applied Life Sciences (ICALS2012) Turkey, September 10-12, 321-326.
  7. https://www.intechopen.com/chapters/39915
  8. Banani, H., Marcet-Houben, M., Ballester, A., Abbruscato, P., González-Candelas, L., Gabaldón, T., & Spadaro, D. (2016). Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics, 17, 19.
  9. https://doi.org/10.1186/s12864-015-2347-x
  10. Barnett, H.L., & Hunter, B.B. (1998). Illustrated Genera of Imperfect Fungi. 4th edn, APS Press, Minncapolis, Minesota, St. Paul, 218pp.
  11. Behiry, S., Nasser, R., Abd El-Kareem, M., Ali, H., & Salem, M. (2020). Mass spectroscopic analysis. MNDO quantum chemical studies and antifungal activity of essential and recovered oil constituents of lemon-scented game against three common molds. Processes, 8(3), 275.
  12. https://doi.org/10.3390/pr8030275
  13. Calvo, G., & Sozzi, G. O. (2004). Improvement of postharvest storage quality of “Red Clapp’s” pears by treatment with 1-methylcyclopropene at low temperature. Journal Horticulture Science Biotechnology, 79, 930-934.
  14. https://doi.org/10.1080/14620316.2004.11511868
  15. Campos, M. R., Ruiz, J., Chel-Guerrero, L., & Ancna, D. (2015). Coccoloba uvifera L. (Polygonaceae) fruit: Phytochemical screening and potential antioxidant activity. Journal of Chemistry, 1, 4-9.
  16. https://doi.org/10.1155/2015/534954
  17. Choudhury, D., Dobhal, P., Srivastava, S., Soumen, S., & Kundu, S. (2018). Role of botanical plant extracts to control plant pathogens, a review. Indian Journal of Agricultural Research, 52(4), 341-346
  18. https://doi.org/10.18805/IJARe.A-5005
  19. Coley-Smith, J. R., Verhoeff, K., & Jarvis, W.R. (1980). The Biology of Botrytis. Academic Press, London, 318pp.
  20. Eid, A. M. (2013). Biological control of post-harvest diseases on apple by using plant essential oils and Trichoderma culture filtrates” Ph. D. Thesis. Agrobiology and Agrochemistry, University of Naples “Federico Ii” Italy. 170 pp.
  21. Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2007). Botrytis: Biology, Pathology, and Control, Springer Science, Dordrecht, 393pp.
  22. Ellis, M. B. (1970). More Dematious Hypomycetes. Commonwealth Mycol. England, 507pp.
  23. Fayyadh, M. A., & Yousif, E. Q. (2019). Biological control of tomato leaf spot disease caused by Alternaria alternata using Chaetomium globosum and some other saprophytic fungi. IOP Conf. Ser.: Earth Environment Science 388 012017.
  24. Gao, L. L., Zhang, Q., Sun, X. Y., Jiang, L., Zhang, R., Sun, G. Y., Zha, Y. L., & Biggs, A. R. (2013). Etiology of moldy core, core browning, and core rot of Fuji apple in China. Plant Diseases, 97, 510-516.
  25. https://doi.org/10.1094/PDIS-01-12-0024-RE
  26. Goes, L. B., Lima da Costa, A. B., Freire, L. L. C., & Oliveria, N. T. (2002). Randomly Amplified Polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani. Brazilian Archives of Biology and Technology, 45(2), 1-13.
  27. https://doi.org/10.1590/S1516-89132002000200005
  28. Hadizadeh, I., Peivastegan, B., & Kolahi, M. (2009). Antifungal activity of Nettle (Urticadioica L.), Colocynth (Citrullus colocynthis L. Schrad), Oleander (Nerium oleander L.) and Konar (Ziziphusspina christi L.) extracts on plants pathogenic fungi. Pakistan Journal of Biological Sciences, 12, 58-63.
  29. https://doi.org/10.3923/pjbs.2009.58.63
  30. Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190-194. https://doi.org/10.1094/PHYTO-96-0190
  31. Harman, G., Howell, C., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species - opportunistic, a virulent plant symbionts. Nature Reviews Microbiology, 2, 43-56.
  32. https://doi.org/10.1038/nrmicro797
  33. Jhalegar, M.J., Sharma, R.R., & Singh, D. (2014). In vitro and in vivo activity of essential oils against major postharvest pathogens of Kinnow (Citrus nobilis × C. deliciosa) mandarin. Journal of Food Scientists & Technologists. 52 (4), 2229-2237.
  34. https://doi.org/10.1007/s13197-014-1281-2
  35. Kishore, G. K., Pande, S., & Harish, S. (2007). Evaluation of essential oils and their components for broad-spectrum antifungal activity and control of late leaf spot and crown rot diseases in peanut. Plant Disease, 91, 375-379.
  36. https://doi.org/10.1094/PDIS-91-4-0375
  37. Lopez-Reyes, J., Spadaro. D., Gullino. M., & Garibaldi, A. (2010). Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour and Fragrance Journal, 25, 171-177.
  38. https://doi.org/10.1002/ffj.1989
  39. Lorito, M., Di Pietro, A., Hayes, C. K., Woo, S. L., & Harman, G. E. (1993). Antifungal, synergistic interaction between chitinolytic enzymes from Trichoderma harzianum and Enterobacter cloacae. Phytopathology, 83, 721-728.
  40. https://doi.org/10.1094/Phyto-83-721
  41. Lorito, M., Peterbauer, C., Hayes, C. K., Woo, S. L., & Harman, G. E. (1994). Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology, 140(3), 623-629. https://doi.org/10.1099/00221287-140-3-623
  42. Made, B. Y.; Fayyadh, M. F., & Al-Luaibi, S. S. (2019). Evaluation of biofungicide formulation of Trichoderma longibrachiatum in controlling of tomato seedling damping-off caused by Rhizoctonia solani. Basrah Journal of Agricultural Science, 32(2), 135-149.
  43. https://doi.org/10.37077/25200860.2019.204
  44. Mc Leod, A. (2014). Moldy core and core rot. Pp, 40-41 In Sutton, T. B., Aldwinkle, H. S., Agnello, A. M., & Walgenbach, J. F. (Eds.). Compendium of Apple and Pear Diseases and Pest, 2nd ed. eds. American Phytopathological Society, St Paul, MN. 224pp.
  45. Mohamed, A., Behiry, S., Ali, H., El-Hefiny, M., Salem, M. & Ashmawy, N. (2020). Phytochemical compounds of branches from P. halepseis oily liquid extract and S. terebinthifolius essential oils and their potential antifungal activity. Prosses, 8(3), 330.
  46. https://doi.org/10.3390/pr8030330
  47. Morgan, D. J. (1971). Numerical taxonomic studies of the genus Botrytis. Transactions of British Mycological Society, 56, 319-325.
  48. https://doi.org/10.1016/S0007-1536(71)80125-0
  49. Notte, A., Plaza, V., Marambio-Alvarado, V., Olivares-Urbina, l., Poblete-Morales, M., Silva-Moreno, E., & Castillo, A. (2021). Molecular identification and characterization of Botrytis cinerea associated with the endemic flora of semi-desert climate in Chile. Current Research in Microbial Sciences, 2, 1-11.
  50. https://doi.org/10.1016/j.crmicr.2021.100049
  51. Ntasiou, P., Myresiotis, C., Konstantinou, S., Papadopoulou-Mourkidou, E., & Karaoglanidis, G. S. (2015). Identification, characterization, and mycotoxigenic ability of Alternaria spp. causing core rot of apple fruit in Greece. International Journal of Food Microbiology, 197, 22-29.
  52. https://doi.org/10.1016/j.ijfoodmicro.2014.12.008
  53. Okla, M. K., Alamri, S. A., Salem, M. Z., Ali, H. M., Behiry, S. I., Nassser, R. A., & Soufan, W. (2019). Yield, phytochemical constituents, and antibacterial activity of essential oils from the leaves, twigs, branches, branch wood, and branch bark of sour orange (Citrus aurantium L.). Processes, 7(6), 363.
  54. https://doi.org/10.3390/pr7060363
  55. Parveen, S., Wani, A.H., Bhat, M. Y., & Koka, J. A. (2016). Biological control of postharvest fungal rots of rosaceous fruits using microbial antagonists and plant extracts a review. Czech Mycology, 68(1), 41–66.
  56. https://doi.org/10.33585/CMY.68102
  57. Peralta-Ruiz, Y., Grande-Tovar, C. D., Navia Porras, D. P., Sinning-Mangonez, A., Delgado-Ospina, J., González-Locarno, M., Maza Pautt, Y., & Chaves-López, C. (2021). Packham’s triumph pears (Pyrus communis L.) post-harvest treatment during cold storage based on chitosan and rue essential oil. Molecules, 26, 725.
  58. https://doi.org/10.3390/molecules26030725
  59. Povi, L.-E., Batomayena, B., Hode, T. A., Kwashie, E. G., Kodjo, A., & Messanvi, G. (2015). Phytochemical screening, antioxidant and hypoglycemic activity of Coccoloba uvifera leaves and Waltheria indica roots extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 7(5), 279-283.
  60. https://doi.org/10.25163/ahi.110006
  61. Rotem, J. (1994). The Genus Alternaria: Biology, Epidemiology, and Pathogenicity. American Phytopathological Society Press. St Paul, MN. 326pp.
  62. Sales, M. D. C., Costa, H. B., Bueno, P. M., Ventura, J. A., & Meira, D. D. (2016). Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pacific Journal of Tropical Biomedicine, 6(1), 26-31.
  63. https://doi.org/10.1016/j.apjtb.2015.09.026
  64. Salih, A. Y., & Mansoor N. M. (2019). A Study of the effect of Bioagent Trichoderma harzianum Rifai, the fungicide topsin-m and their interaction on root rot disease of Okra Abelmoschus esculentus in the Field. Basrah Journal of Agricultural Science, 32(Spec. Issue 2), 320-336.
  65. https://doi.org/10.37077/25200860.2019.280
  66. Samson, R. A., Hoekstra, E. S., & Van Oorschot, C. A. N. (1981). Introduction to food-borne fungi. Baarn, Netherlands: Centraalbureau voor Schimmelcultures, 299pp.
  67. Sanzani, S. S., Schena, L., Girolamo, A., Ippolito, A., & Gonzalez-candela, L. (2010). Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharvest Biology Technology, 56, 1-11.
  68. https://doi.org/10.1016/j.postharvbio.2009.11.010
  69. Schirmbock, M., Lorito, M., Wang, Y. L., Hays, C. K., Arisan-Atac, I., Scala, F., Harman, G. E., & Kubicek, C. P. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology Journal, 60, 4364-4370.
  70. https://doi.org/10.1128/aem.60.12.4364-4370.1994
  71. Shahi, S. K., Patra, M., Shukla, A. C., & Dikshit, A. (2003). Use of essential oil as botanical-pesticide against postharvest spoilage in Malus pumelo fruits. BioControl, 48, 223-232.
  72. https://doi.org/10.1023/A:1022662130614
  73. Shoresh, M., Mastouri, F., & Harman, G. E. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21-43.
  74. https://doi.org/10.1146/annurev-phyto-073009-114450
  75. Simmons, E. G. (1995). Alternaria themes and variations (112-144). Mycotoxin, 55, 55-163.
  76. Singh, B., Kumar, K., Singh, Y., & Akhilendra, V. (2017). Impact of postharvest diseases and their management in fruit crops: An overview. Journal of Bio Innovations, 6(5), 749-760.
  77. Terry, L. & Joyce, D. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: A brief review. Postharvest Biology and Technology, 32, 1-13.
  78. https://doi.org/10.1016/j.postharvbio.2003.09.016
  79. Tzortzakis, N. (2019). Physiological and proteomic approaches to address the active role of Botrytis cinerea inoculation in tomato postharvest ripening. Microorganisms, 7, 681.
  80. https://doi.org/10.3390/microorganisms7120681
  81. Vieira, A. M. F. D., Steffens, C. A., Argenta, L. C., do Amarante, C. V. T., Oster, A.H., Casa, R. T., Amarante, A. G. M., & Espíndola, B. P. (2018). Essential oils for the postharvest control of blue mold and quality of “Fuji” apples. Pesquisa Agropecuária Brasileira, 53, 547-556. (English Abstract).
  82. http://doi.org/10.15536/thema.15.2018.93-101.809
  83. Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology, 95, 1368-1373.
  84. https://doi.org/10.1094/PHYTO-95-1368
  85. White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. 315-322. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., (Eds.). PCR Protocols: A Guide to Methods and Applications, Academic Press, New York, 482pp.
  86. http://doi.org/10.1016/B978-0-12-372180-8.50042-1
  87. Xing, Y., Xui. Q., Li. X., Che, Z., & Yun, J. (2011). Antifungal activities of clove oil against Rhizopus nigricans, aspergillus flavus and penicillium citrinum in vitro and in wounded fruit test. Journal of Food Safety, 32, 84-93.
  88. https://doi.org/10.1111/j.1745-4565.2011.00347.x
  89. Xylia, P., Chrysargyris, A., Ahmed, Z. F. R., & Tzortzakis, N. (2021). Application of rosemary and eucalyptus essential oils and their main component on the Preservation of apple and pear fruits. Horticulture, 7, 479.
  90. https://doi.org/10.3390/horticulturae7110479
  91. Yahyazadeh, M., Omidbaigi, R., Zare, R., & Taheri, H. (2008). Effect of some essential oils on mycelial growth of Penicillium digitatum Sacc. World Journal Microbiology and Biotechnology, 24(8), 1445-1455.
  92. https://doi.org/10.1007/s11274-007-9636-8