Main Article Content

Abstract

An essential element of date palm production is the pollen source. The present study was conducted during two successive seasons of 2020 and 2021 to evaluate some males of Aswan date palm. Herein, morphological, physicochemical, and molecular characteristics of 23 date palm males were evaluated to determine the most superior and promising males for pollinating the female ‘Bartamoda’ cultivar. It is obvious that ‘Male No. 22’, recorded almost the highest value for morphological characteristics, pollen viability, crude protein, total amino acids, and mineral content. In contrast, ‘Male No. 5’, showed the lowest content of crude protein, total amino acids, and mineral content compared to the other males that were grown in the rest of the locations in Aswan government. All ISSR primers were highly polymorphic, with a value of 100%, highlighting the necessity of employing such primers when investigating date palm diversification. Two unique bands were among the 43 total bands that were produced. The genetic coefficients with a mean of 61.5% and the first two primary axes were able to explain roughly 52.30% of the genetic variance across the genotypes of date palms. Those results suggested that all genotypes tested are efficient for the fertilization of ‘Bartamoda’ inflorescences and can be used as pollinizer in commercial orchards of this cultivar.

Keywords

Bartamoda Date palm ISSR Phoenix dactylifera L. Pollen Viability

Article Details

How to Cite
El-Kosary, S. ., Hmmam, I. ., Gadalla, E. G. ., & Qenawy, Y. G. . (2023). Morphological, Physicochemical, and Molecular Evaluation of Twenty-Three Date Palm Males Growing in Aswan Governorate. Basrah Journal of Agricultural Sciences, 36(1), 90–106. https://doi.org/10.37077/25200860.2023.36.1.08

References

  1. A.O.A.C. Association of Official Analytical Chemists, & Association of Official Agricultural Chemists (1984). Official Methods of Analysis of the Association of Official Analytical Chemists. S. Williams. Association of Official Analytical Chemists. Arlington, Virginiahttps://lib.ugent.be/catalog/rug01:000071630
  2. A.O.A.C., Association of Official Analytical Chemists, & Association of Official Agricultural Chemists (2000). Official method of analysis of the association of official analytical chemists. Association of Official Analytical Chemists.
  3. https://www.worldcat.org/title/official-methods-of-analysis-of-aoac-international/oclc/44761301
  4. Abo-Rekab, Z. A. M., EL-Kafrawy, T. M., & Ghada, A.A. (2014). Selection of good male date palm pollinators for improving both yields and fruit quality, using morphological characterization and genetic relationships of pollinators usingissr markers. Scientific Journal Flowers & Ornamental Plants, 1, 55-7.
  5. https://doi.org/10.21608/SJFOP.2014.4006
  6. Abubakar, B. Y., Wusirika, R., MuA'zu, S., Khan, A. U., & Adamu, A. K. (2011). Detection of genetic variability using random amplified polymorphic DNA markers in some accessions of Moringa oleifera Lam. from northern Nigeria. International Journal of Botany, 7(3), 237-242.
  7. https://doi.org/10.3923/ijb.2011.237.242
  8. Aldhahrani, A., & Althobaiti, F. (2019). Acacia gerrardii leaf extracts inhibit genetic diversity induced by streptozotocin in male rats. Biomedical and Pharmacology Journal, 12(4), 1915-1922.
  9. https://doi.org/10.13005/bpj/1823
  10. Al-Hamoudi, A. H., El-Hammady, A. M., Desouky, I. M., & Abdel-Hamid, A. (2006). Evaluation of some male types as pollinators for Barhi date palm cv. grown in Egypt. Arab Universities Journal of Agricultural Sciences, 14(1), 365-377.
  11. https://doi.org/10.21608/AJS.2006.15573
  12. Al-Mssallem, I. S., Hu, S., Zhang, X., Lin, Q., Liu, W., Tan, J., Yu, X., Liu, J., Pan, L., & Zhang, T. (2013). Genome sequence of the date palm Phoenix dactylifera L. Nature Communications, 4(1), 1-9.
  13. https://doi.org/10.1038/ncomms3274
  14. Aly, H. S. (2018). Evaluation of pollen grains germination, viability and chemical composition of some date palm males. Middle East Journal of Agriculture Research, 7(7), 235-247.
  15. Arif, I. A., Bakir, M. A., Khan, H. A., Ahamed, A., Al Farhan, A. H., Al Homaidan, A. A., Al Sadoon, M., Bahkali, A. H., & Shobrak, M. (2010). A simple method for DNA extraction from mature date palm leaves: impact of sand grinding and composition of lysis buffer. International Journal of Molecular Sciences, 11(9), 3149-3157.
  16. https://doi.org/10.3390/ijms11093149
  17. AlSaikhan, M. S (2006). Physical and chemical characteristics response of three date palm cultivars to source of pollen grains. Journal of Agricultural Science, Mansoura University, 31(3), 1537-1546.
  18. https://doi.org/10.21608/JPP.2006.235752
  19. Bacha, M. A., Ali, M. A., & Farahat, F. A. (1997). Chemical composition of pollen grains of some date palm males grown in Riyadh, Saudi Arabia. Arab Gulf Journal of Scientific Research, 15, 783-803.
  20. Bujang, J. S., Zakaria, M. H., & Ramaiya, S. D. (2021). Chemical constituents and phytochemical properties of floral maize pollen. Plos one, 16(2), e0247327.
  21. https://doi.org/10.1371/journal.pone.0247327
  22. Campos, M. G., Bogdanov, S., de Almeida-Muradian, L. B., Szczesna, T., Mancebo, Y., Frigerio, C., & Ferreira, F. (2008). Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 47(2), 154-161.
  23. https://doi.org/10.1080/00218839.2008.11101443
  24. Collard, B. C., & Mackill, D. J. (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 27(1), 86-93.
  25. https://doi.org/10.1007/s11105-008-0060-5
  26. Crespel, L., Pernet, A., Le Bris, M., Gudin, S., & Oyant, L. H. S. (2009). Application of ISSRs for cultivar identification and assessment of genetic relationships in rose. Plant breeding, 128(5), 501-506.
  27. https://doi.org/10.1111/j.1439-0523.2008.01600.x
  28. Eiadthong, W., Yonemori, K., Kanzaki, S., Sugiura, A., Utsunomiya, N., & Subhadrabandhu, S. (2000). Amplified fragment length polymorphism analysis for studying genetic relationships among Mangifera species in Thailand. Journal of the American Society for Horticultural Science, 125(2), 160-164.
  29. https://doi.org/10.21273/JASHS.125.2.160
  30. FAO. (2022). World Food and Agriculture – Statistical Yearbook 2022. Rome.
  31. https://doi.org/10.4060/cc2211en
  32. Ghnaim, H. D., & Al-Muhtaseb, J. A. (2006). Effect of pollen source on yield, quality and maturity of “Mejhool” date palm. Jordan Journal of Agricultural Sciences, 2(1), 8-15.
  33. https://journals.ju.edu.jo/JJAS/article/view/1273
  34. Guettouchi, A., Elshibli, S., Haider, N., Nabulsi, I., & Ykhlef, N. (2017). Molecular diversity in date palm (Phoenix dactylifera L.) cultivars from Algeria indicated by RAPD and ISSR polymorphisms. Plant Cell Biotechnology and Molecular Biology, 18(1-2), 76-89.
  35. https://researchportal.helsinki.fi/en/publications/molecular-diversity-in-date-palm-iphoenix-dactyliferai-l-cultivar
  36. Haider, N. (2017). Determining phylogenetic relationships among date palm cultivars using random amplified polymorphic dna (rapd) and inter-simple sequence repeat (issr) markers. Pp: 153-172. In: Al-Khayri, J., Jain, S., & Johnson, D. (Eds.). Date Palm Biotechnology Protocols, Volume II. Methods in Molecular Biology, vol 1638. Humana Press, New York, 422pp.
  37. https://doi.org/10.1007/978-1-4939-7159-6_14
  38. Hamilton, P. B., & Van Slyke, D. D. (1943). Amino acid determination with ninhydrin. Journal of Biological Chemistry, 150(1), 231-250.
  39. https://doi.org/10.1016/S0021-9258(18)51268-0
  40. Harangozó, M., & Královič, J. (1996). Determination of Fe and Zn in agricultural plants with special cultivation by radionuclide X-ray fluorescence analysis. Journal of Radioanalytical and Nuclear Chemistry Letters, 213, 207-211.
  41. https://doi.org/10.1007/BF02165692
  42. Hu, J., & Vick, B. A. (2003). Target region amplification polymorphism: A novel marker technique for plant genotyping. Plant Molecular Biology Reporter, 21(3), 289-294.
  43. https://doi.org/10.1007/BF02772804
  44. Human, H., & Nicolson, S. W. (2006). Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry, 67(14), 1486-1492.
  45. https://doi.org/10.1016/j.phytochem.2006.05.023
  46. Hussein, E. H., Adawy, S. S., Ismail, S. E. M. E., & El-Itriby, H. A. (2005). Molecular characterization of some Egyptian date palm germplasm using RAPD and ISSR markers. Arab Journal of Biotechnology, 8(1), 83-98.
  47. Ibrahim, I. A., Emara, H. A., Nower, A. A., & Atfi, M. S. (2014). In vitro study on germination of date palm pollen grains and its impact on fruit quality. Life Sci. J, 11(10), 1291-1300.
  48. https://doi.org/10.1080/15538362.2020.1815116
  49. Ibrahim, K., Mohamed, F. H., Abo-Zeid, A. A., Elwan, M. W., & Abdel Salam, M. M. (2020). Genetic diversity in Egyptian snake melon accessions as revealed by Inter Simple Sequence Repeat (ISSR) markers. Catrina: The International Journal of Environmental Sciences, 22(1), 71-76.
  50. https://doi.org/10.21608/CAT.2019.12293.1025
  51. Iqbal, M., Munir, M., & Ullah, M. N. (2011). Effect of different dactylifera males and their whorl pollen grain on fruit set, fruit drop and fruit characteristics of Dhakki date palm. J. Agric. Res, 49(4), 507-516.
  52. Johnson, D. V. (2011). Introduction: Date palm biotechnology from theory to practice. Pp. 1-11. In Jain, S. M., Al-Khayri, J. M., & Johnson, D. V. (Editors). Date palm biotechnology, Springer, 743pp. Dordrecht.
  53. https://doi.org/10.1007/978-94-007-1318-5_1
  54. Kumar Ganesan, S., Singh, R., Choudhury, D. R., Bharadwaj, J., Gupta, V., & Singode, A. (2014). Genetic diversity and population structure study of drumstick (Moringa oleifera Lam.) using morphological and SSR markers. Industrial Crops and Products, 60, 316-325.
  55. https://doi.org/10.1016/j.indcrop.2014.06.033
  56. Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103(2), 455-461.
  57. https://doi.org/10.1007/s001220100570
  58. Mgendi, M. G., Manoko, M. K., & Nyomora, A. M. (2010). Genetic diversity between cultivated and non-cultivated Moringa oleifera Lam. provenances assessed by RAPD markers/Moringa oleifera'nin ekili olan ve olmayan kökenlerinin genetik çesitliliginin RAPD markörleri ile degerlendirilmesi. Journal of Cell and Molecular Biology, 8(2), 95.
  59. Mirzaei, S. (2021). Application of molecular markers in plant sciences; An overview. Central Asian Journal of Plant Science Innovation, 1(4), 192-200.
  60. https://doi.org/10.22034/CAJPSI.2021.04.02
  61. Moustafa, A. A., Ibrahim, Z. A., El-Yazel, S. A. S., & El-Anwer, M. A. (2010). Evaluation and selection of some seedling date palm males grown in Fayoum Governorate, Egypt. In IV International Date Palm Conference, 882, 69-79
  62. https://doi.org/10.17660/ActaHortic.2010.882.7
  63. Muluvi, G. M., Sprent, J. I., Soranzo, N., Provan, J., Odee, D., Folkard, G., McNicol, J.W., & Powell, W. (1999). Amplified fragment length polymorphism (AFLP) analysis of genetic variation in Moringa oleifera Lam. Molecular Ecology, 8(3), 463-470.
  64. https://doi.org/10.1046/j.1365-294X.1999.00589.x
  65. Mustafa, E. A. M., Heiba, S. A. A., Saleh, M. M. S., Ashour, N. E., Mohamed, D. A., & El-Migeed, M. M. M. A. (2014). Effect of different pollinizer sources on yield, fruit characteristics and phylogenetic relationships with Amhat cv. date palm (Phoenix dactylifera L.) in Egypt using RAPD markers. International Journal of Agricultural Research, 9(7), 331-343.
  66. https://doi.org/10.3923/ijar.2014.331.343
  67. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2(3), 225-238.
  68. https://doi.org/10.1007/BF00564200
  69. Rohlf F. J. (2004). NTSYS-pc Version 2.02 Numerical Taxonomy and Multivariate Analysis System. Applied Biostatistics Inc., Exeter Software,” Setauket, New York, 43pp.
  70. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. 2nd edn. Cold spring harbor laboratory press, 1546pp.
  71. Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods, 8th Edn. Ames: Iowa State Univ. Press Iowa, 524pp.
  72. Srivashtav, V. S., Kapadia, C. V., Mahatma, M. K., Jha, S. K., Jha, S., & Ahmad, T. (2013). Genetic diversity analysis of date palm (Phoenix dactylifera l.) In the Kutch region of India using RAPD and ISSR markers. Emirates Journal of Food and Agriculture, 25(1), 907-915.
  73. https://doi.org/10.9755/ejfa.v25i11.14325
  74. Stanley, R. G. (1971). Pollen chemistry and tube growth. Pp. 131-155. In Pollen. Butterworth-Heinemann.
  75. Stanley, R. G., & Linskens, H. F. (1974). Chapter 6: Viability Tests. Pp: 67-86. Pollen. Springer, Berlin, Heidelberg.
  76. https://doi.org/10.1007/978-3-642-65905-8_6
  77. Verma, S., & Rana, T. S. (2011). Genetic diversity within and among the wild populations of Murraya koenigii (L.) Spreng., as revealed by ISSR analysis. Biochemical Systematics and Ecology, 39(2), 139-144.
  78. https://doi.org/10.1016/j.bse.2011.01.017
  79. Wang, Q., Zhang, B., & Lu, Q. (2009). Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Molecular Biology Reporter, 27(2), 139-143.
  80. https://doi.org/10.1007/s11105-008-0065-0
  81. Yang, S. H., Guo, N., Ge, W. Y., & Ge, H. (2013). aflp-based genetic diversity among the populations of Rosa laxa in tianshan mountains of Xinjiang, China. Acta Horticulture. 977, 307-312.
  82. https://doi.org/10.17660/ActaHortic.2013.977.36
  83. Zhang, L. H., Byrne, D. H., Ballard, R. E., & Rajapakse, S. (2006). Microsatellite marker development in rose and its application in tetraploid mapping. Journal of the American Society for Horticultural Science, 131(3), 380-387.
  84. https://doi.org/10.21273/JASHS.131.3.380
  85. Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183.
  86. https://doi.org/10.1006/geno.1994.1151