Main Article Content


This study was carried out in the laboratories and fields of Department of Plant Protection, College of Agriculture and aimed at isolating and identifying Trichoderma spp. from different agricultural soils in Basrah and evaluating of the efficacy of some polymeric materials in the formulation of T. longibrachiatum as biofungicides. The results showed that there was no direct effect of Polyvinyl acetate (PVA) on the growth of Rhizoctonia solani and T. longibrachiatum as inhibition percentage was 0%. While Polyurethane (PU) had low effect on growth of T. longibrachiatum as inhibition percent was 4.47%. The results of pot experiment showed that PVA reduced tomato seeds germination to50% compared to 66.6 and 70% in PU and control treatment respectively. The results of bio effect in the control of tomato seedlings disease caused by R. solani showed that T. longibrachiatum +PU (PUT) improve tomato seeds germination and enhanced plant growth as plant height reached 15.7cm compared with 13.5 and 12.9 in PVAT and control treatment. The results also showed that the polymeric material improved longevity of T. longibrachiatum spores for six months, but the spore viability began to decreased gradually during the storage period, reaching 6.03?10? and 2.54?10? cfu.g-1 with PVAT and PUT respectively after six months compared to the number of spores before storage of 5.09 × 10? and 1.77 × 10? cfu.g -1 respectively.


Trichoderma longibrachiatum Biofrmulation Biocontrol Damping-off

Article Details

How to Cite
Mahde, B. Y. ., Fayyadh, M. A. ., & Al-Luaibi, S. S. . (2019). Evaluation of Biofungicide Formulation of Trichoderma longibrachiatum in Controlling of Tomato Seedling Damping-off Caused by Rhizoctonia solani. Basrah Journal of Agricultural Sciences, 32(2), 135–149.


  1. Abbas, A.; Jiang, D. & Fu, Y. (2017). Trichoderma spp. as Antagonist of Rhizoctonia solani. J. Plant Path. Microbiol., 8(3): 1-9.
  2. Abboud, N.T. & Abboud, H. M. (2010). Evaluation of the efficiency of preparations and storage conditions of Trichoderma harzianum in the control of fungi Rhizoctonia solani and Pythium aphanidermatum causing tomato wilt and the fall of seedling in cucumbers Al-Qadisiah J. Agric. Sci., 15(3): 73-82. (In Arabic).
  3. Adzmi, F.; Meon, S.; Musa, M.H. & Yusuf, N.A. (2012). Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay. J. Microencapsul., 29(3): 205-210.
  4. Al-Mesaadi, A.M.T. (2014). Ability of manufacturing of bioformulation of Trichoderma viride and its application in biocontrol of wilt and root-knot disease in melon that caused by Fusarium oxysporum f. sp melonis and Meloidogyne javanica. M. Sc. Thesis. Coll. Agric., Univ. Basrah, 83pp. (In Arabic).
  5. Al-Qaisi, S.A. & Alwan, A.H. (2016). Molecular identification of rhizosphere Trichoderma spp. and their antagonistic impact against some plant pathogenic fungi. Baghdad Sci. J., 13(1): 53-65.
  6. Bell, D.K.; Wells, H.D & Markham, C.R. (1982). In vitro antagonism of Trichoderma spp. against six fungal plant pathogens. Phytopathology,72: 379-382.
  7. Bhat, K.A.; Anwar A.; Lone, G.M.; Hussain, K. & Nazir, G. (2009). Shelf life of liquid fermented product of Trichoderma harzianum in talc. J. Mycol. Pl. Pathol., 39(2):263-265.
  8. Clark, F.E. (1965). Agar-plate method for total microbial count: 1460-1466.? In Norman, A.G. (Ed.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agron. Monogr. 9.2. ASA, SSSA, Madison, WI.
  9. De La Crus, R.; Crus, J.; Alanis, M.D.; Torres, J.A. & Parra, R. (2019). Fungi-based biopesticides: shelf-life preservation technologies used in commercial products. J. Pest Sci., 92(3): 1003-1015.
  10. Ebnesajjad, S. (2011). Handbook of Adhesives and Preparation. Elsevier, Inc. 450pp.
  11. Fayyadh, M.A. & Abbas, M.H. (2018). Plant Diseases: Principles and Advances. Shahrayar Books. Basrah. 435pp. (In Arabic).
  12. Gajera, H.P.; Bambharolia, R.P.; Patel, S.V.; Khatrani, T.J. & Goalkiya, B.A. (2012). Antagonism of Trichoderma spp. against Macrophomina phaseolina: evaluation of coiling and cell wall degrading enzymatic activities. J. Plant Pathol. Microb., 3(7): 1-7.
  13. Ghisalberti, E.L.; Narbey, M. J.; Dewan, M.M. & Sivasithamparam, K. (1990). Viability among strain of Tricoderma harzianum in their ability and to reduce take – all to produce Pyrones. Plant and Soil, 121: 287-291.
  14. Harman, G. E.; Howell, C. R.; Viterbo, A.; Chet, I. & Lorito, M. (2004). Trichoderma species-opportunistic, a virulent plant symbionts. Nat. Rev. Microbiol., 2(1): 43-56.
  15. Hjeljord, L. & Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: 131-152. cited in: Harman, G. E. and Kubicek, C. P. (1998). Trichoderma and Gliocladium Vol. 2. Taylor and Francis, London. 393pp.
  16. Jeyarajan, R. (2006). Prospects of indigenous mass production and formulation of Trichoderma. Current Status of Biological Control of Plant diseases using antagonistic organisms in India: Eds Rabindra R. J. & Ramanujam B. Project Directorate of Biological Control, Bangalore, 74-80.?
  17. Jovicic-Petrovic, J.; Mihajlovic, M.; Tanovic, B.; Radic, D.; Karlicic, V. & Raicevic, V. (2017). Pythium aphanidermatum Suppression by Antagonistic Action of Trichoderma longibrachiatum. Acta Microbiol. Bulg., 33(2): 74-78.
  18. Kerenyi, Z.; Zeller, K.; Hornok, L. & Leslie, J.F. (1999). Molecular standardization of mating type terminology in the Gibberella fujikuroi species complex. Appl. Environ. Microb., 65(9): 4071-4076.
  19. Kumar, S.; Thakur, M. & Rani, A. (2014). Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afric. J. Agric. Res., 9(53): 3838-3852.
  20. Latorre, B. (2004). Enfermedades de las Plantas Cultivadas. Santiago; Ediciones Universidad Catolica de Chile.. 638 pp. cited in: Montealegre, J.; Valderrama, L.; Sanchez, S.; Herrera, R.; Besoain, X. & Perez, L. M. (2010). Biological control of Rhizoctonia solani in tomatoes with Trichoderma harzianum mutants. Electron. J. Biotechn., 13(2): 1-11.
  21. Locatelli, G.O.; Dos Santos, G.F.; Botelho, P. S.; Finkler, C.L.L., & Bueno, L.A. (2017). Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biol. Control, 117: 21–29.
  22. Mahajan, N. & Gupta, P. (2015). New insights into the microbial degradation of polyurethanes. RSC Adv., 5: 41835-41854.
  23. Oancea, F.; Raut, I.; Sesan, T.E. & Cornea, P.C. (2016). Dry flowable formulation of biostimulants Trichoderma strains. Agr. Sci. Procedia, 10: 494-502.
  24. Puyam, A. (2016). Advent of Trichoderma as a bio-control agent- a review. J. Appl. Nat. Sci., 8(2): 1100-1109.
  25. Russell, J. R.; Huang, J.; Anand, p.; Kucera, K.; Sandoval, A.G.; Dantzler, K. W.; Hickman, D.; Jee, J.; Kimovee, F. M.; Koppstein, D.; Marks, D. A.; Mittermiller, P.; Nuncs, S. J.; Sntiago, M.; Townes, M. A.: Vishnevestsky, M.; Williams, N. E.; Vargas, M. P. N.; Boulanger, L.; Slack, C.B. & Strobel, S. (2011). Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol.,77(17): 6076-6084.
  26. Saleh, Y.A. & Bedan, M.M. (2000). Chemical and biological control to Rhizoctonia solani Kuhin causing Tomato damping-off. Basrah J. Agric. Sci., 13(2): 101-111.
  27. Santos, G. F.; Locatelli, G. O.; Coelho, D. A.; Botelho, P. S.; Amorim, M. S.; Vasconcelos, T. C. L. & Bueno, L.A. (2015). Factorial design, preparation and characterization of new beads formed from alginate, polyphosphate and glycerol gelling solution for microorganism microencapsulation. J. Sol-Gel Sci. Techn., 75(2): 345-352.
  28. Sawant, I.S. (2014). Trichoderma - foliar pathogen interactions. The Open Mycol. J., 8: 58-70.
  29. Shaban, A. & Al-Malah, N.M. (1993). Pesticides. Dar Al Kutub For Printing & Publishing. Al-Mosul, Iraq. 519pp. (In Arabic).
  30. Sharma, P.; Sharma, M.; Raja, M. & Shanmugam, V. (2014). Status of Trichoderma research in India: a review. Indian Phytopathol., 67(1): 1-19.
  31. Vinale, F.; Sivasithampram, K.; Ghisalberti, L. & Ruocco, M. (2012). Trichoderma secondary metabolites that affect plant metabolism. Nat. Prod. Commun., 7(11): 1545-1550.
  32. Zhu, Z. & Zhuo, R. (2001). Slow release behavior of starch-g-poly (vinyl alcohol) matrix for 2,4,5-trichlorophenoxyacetic acid herbicide. Eur. Polym. J., 37 (9): 1913-1919.