Main Article Content
Abstract
The dust mite Oligonychus afrasiaticus (McGregor 1939) (Acari: Tetranychidae) poses a significant threat to date palm Phoenix dactylifera L. productivity in Iraq. To address this issue, a field study was conducted in a private date palm orchard in Al-Zubair district, Basrah province, Iraq, to assess the efficacy of some treatments in controlling the dust mite population on date palm fruits. The treatments included lemongrass extract, nanosulfur, a combination of lemongrass extract and nanosulfur, liquid sulfur, and a distilled water as control treatment. Treatments were applied by spraying on leaves and fruits at three dates: five weeks, eight weeks, and eleven weeks after pollination. Dust mite mortality rates were measured at intervals of 1, 3, 5, and 7 days after treatment application. Results revealed that the second date, eight weeks after pollination, exhibited the highest mortality rate of 76.77%, significantly outperforming other dates. Among the treatments, liquid sulfur showed the highest efficiency, with an 87.83% mortality rate, followed closely by the combination of lemongrass extract and nanosulfur (84.14%). Nanosulfur alone recorded a mortality rate of 79.26%, while lemongrass extract alone showed a mortality rate of 49.15%. The mortality rate increased over time, reaching 80.79% after 7 days and 65.76% after 1 day. In conclusion, liquid sulfur emerged as the most effective treatment for controlling the dust mite population on date palm fruits. The second date, eight weeks after pollination, was the optimal time for treatment application. These findings offer valuable insights into sustainable and environmentally friendly pest control strategies for date palm cultivation in Iraq.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Ababutain, I. (2019). Antimicrobial activity and gas chromatography-mass spectrometry (GC-MS) analysis of Saudi Arabian Ocimum basilicum leaves extracts. Journal of Pure & Applied Microbiology, 13(2), 823–833. https://doi.org/10.22207/JPAM.13.2.17
- Al-Azzazy, M. M., & Ghani, S. B. A. (2024). Field evaluation of the efficacy of copper nanoparticles against mites associated with orange trees. Brazilian Journal of Biology, 84. 1-7.
- https://doi.org/10.1590/1519-6984.270451
- Ali, H. M., & Fhaid, K. A. (2019). Field efficacy of pesticides against dust mites Oligonychus afrasiaticus (McGregor) (Acari: Tetranchidae) on date palm, hillawi cultivar. Basrah Journal of Agricultural Sciences, 32(2), 160–168.
- https://doi.org/10.37077/25200860.2019.206
- Almrsomy, Z. M. M., Al-Dahwy, S. S. J., & Ali, A.-A. J. (2020). Effect of fenpyroximate in normal and nanoparticles to the control of ghobar mite Oligonychus afrasiaticus (Mcgregor) (ACARI: Tetranychidae). Plant Archives, 20(1), 1293-1297.
- Chutrtong, J., & Kularbphettong, K. (2019). Study on optimal conditions of lemongrass extraction. E3S Web of Conferences, 100, 00008.
- https://doi.org/10.1051/e3sconf/201910000008
- de Melo, J. P. R., da Camara, C. A. G., da Silva Lima, G., de Moraes, M. M., & Alves, P. B. (2018). Acaricidal properties of the essential oil from Aristolochia trilobata and its major constituents against the two-spotted spider mite (Tetranychus urticae). Canadian Journal of Plant Science, 98(6), 1342–1348. https://doi.org/10.1139/cjps-2018-0163
- El-halawany, A., Sanad, A., & Rakha, M. (2017). Field evaluation of date palm dust mite, Oligonychus afrasiaticus (McGregor) control on date palm trees in New Valley governorate of Egypt. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 9(3), 129–134.
- https://doi.org/10.21608/eajbsf.2017.17034
- Fu, Q.-M., Zeng, B., Xiao, Q.-Y., He, B.-S., Huang, C.-X., & Bao, M.-H. (2021). Essential oils for the treatment of dust mites. E3S Web of Conferences, 271,04032.
- https://doi.org/10.1051/e3sconf/202127104032
- Gavanji, S., Jalalizand, A. R., Ali, J. K., & Larki, B. (2013). Comparative Acaricidal Efficacy of Sulfur and Nano Sulfur against Tetranychus urticae. International Journal of Scientific Research in Inventions and New Ideas, 1(2), 23–28.
- Ghani, S. B. A., Al-Azzazy, M. M., Alhewairini, S. S., & Al-Deghairi, M. A. (2024). The miticidal activity of silver nanoparticles towards date palm mite (Oligonychus afrasiaticus (McGregor)): Efficacy, selectivity, and risk assessment. Brazilian Journal of Biology, 84, e261262.
- https://doi.org/10.1590/1519-6984.261262
- Hussain, S., Javed, W., Tajammal, A., Khalid, M., Rasool, N., Riaz, M., & Shah, S. A. A. (2023). Synergistic Antibacterial Screening of Cymbopogon citratus and Azadirachta indica: Phytochemical Profiling and Antioxidant and Hemolytic Activities. ACS Omega, 8, 19, 16600–16611. https://doi.org/10.1021/acsomega.2c06785
- Jian, Y., Li, S., Li, D., Ning, C., Zhang, S., Jian, F., & Si, H. (2022). Evaluation of the in vitro acaricidal activity of ethanol extracts of seven Chinese medicinal herbs on Ornithonyssus sylviarum (Acari: Macronyssidae). Experimental & Applied Acarology, 87(1), 67–79.
- https://doi.org/10.1007/s10493-022-00716-9
- Johnson, D. V. (2010). Worldwide dispersal of the date palm from its homeland. Acta Horticurae, 882, 369–375.
- https://doi.org/10.17660/ActaHortic.2010.882.42
- Kemal, J., Zerihun, T., Alemu, S., Sali, K., Nasir, M., Abraha, A., & Feyera, T. (2020). In vitro acaricidal activity of selected medicinal plants traditionally used against ticks in eastern Ethiopia. Journal of Parasitology Research, 2020, 1–10.
- https://doi.org/10.1155/2020/7834026
- Khursheed, A., Rather, M. A., Jain, V., Wani, A. R., Rasool, S., Nazir, R., & Majid, S. A. (2022). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis, 173(Pt A), 105854. https://doi.org/10.1016/j.micpath.2022.105854
- Latifian, M. (2017). Integrated pest management of date palm fruit pests: A review. Journal of Entomology, 14(3),112–121. https://doi.org/10.3923/je.2017.112.121
- Lim, E. G., Roh, H. S., Coudron, T. A., & Park, C. G. (2011). Temperature-dependent fumigant activity of essential oils against two spotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 104(2), 414–419. https://doi.org/10.1603/EC10249
- Luiz de Oliveira, J., Ramos Campos, E. V., & Fraceto, L. F. (2018). Recent developments and challenges for nanoscale formulation of botanical pesticides for use in sustainable agriculture. Journal of Agricultural and Food Chemistry, 66, 34, 8898–8913. https://doi.org/10.1021/acs.jafc.8b03183
- Margulis-Goshen, K., & Magdassi, S. (2013). Nanotechnology: An advanced approach to the development of potent insecticides. Pp. 295–314. In Isaac Ishaaya, I., Palli, S. R., & Horowitz, A. R. (Editors). Advanced Technologies for Managing Insect Pests Dordrecht: Springer, 328pp. https://doi.org/10.1007/978-94-007-4497-4_15
- Mirza, J. H., Kamran, M., & Alatawi, F. J. (2021). Phenology and abundance of date palm mite Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae) in Riyadh, Saudi Arabia. Saudi Journal of Biological Sciences, 28(8), 4348-4357
- https://doi.org/10.1016/j.sjbs.2021.04.023
- Mohammed, M., El-Shafie, H., & Munir, M. (2023). Development and validation of innovative machine learning models for predicting date palm mite infestation on fruits. Agronomy (Basel, Switzerland), 13(2), 494.
- https://doi.org/10.3390/agronomy13020494
- Ngegba, P. M., Cui, G., Khalid, M. Z., & Zhong, G. (2022). Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12(5), 600. https://doi.org/10.3390/agriculture12050600
- Nisha Raj, S., Anooj, E. S., Rajendran, K., & Vallinayagam, S. (2021). A comprehensive review on regulatory invention of nano pesticides in Agricultural nano formulation and food system. Journal of Molecular Structure, 1239, 130517.
- https://doi.org/10.1016/j.molstruc.2021.130517
- Park, J.-H., & Lee, H.-S. (2018). Acaricidal target and mite indicator as color alteration using 3, 7-dimethy l-2, 6-octadienal and its derivatives derived from Melissa officinalis leaves. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-26536-9
- Pohlit, A., Rezende, A., Lopes Baldin, E., Lopes, N., & de Andrade Neto, V. (2011). Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases - A review. Planta Medica, 77(6), 618–630. https://doi.org/10.1055/s-0030-1270949
- Prischmann, D. A., James, D. G., Wright, L. C., Teneyck, R. D., & Snyder, W. E. (2005). Effects of chlorpyrifos and sulfur on spider mites (Acari: Tetranychidae) and their natural enemies. Biological Control: Theory and Applications in Pest Management, 33(3), 324–334.
- https://doi.org/10.1016/j.biocontrol.2005.03.008
- Ruiz-Jimenez, K. Z., Osorio-Osorio, R., Hernández-Hernández, L. U., Ochoa-Flores, A. A., Silva-Vazquez, R., & Mendez-Zamora, G. (2021). Acaricidal activity of plant extracts against the red palm mite Raoiella indica (Acari: Tenuipalpidae). Revista de La Sociedad Entomologica Argentina, 80(1), 33–39. https://doi.org/10.25085/rsea.800104
- Senbill, H., Hassan, S. M., & Eldesouky, S. E. (2023). Acaricidal and biological activities of Titanium dioxide and Zinc oxide nanoparticles on the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) and their side effects on the predatory mite, Neoseiulus californicus (Acari: Phytoseiidae). Journal of Asia-Pacific Entomology, 26(1), 102027.
- https://doi.org/10.1016/j.aspen.2022.102027
- Williams, J. S., & Cooper, R. M. (2004). The oldest fungicide and newest phytoalexin – a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathology, 53(3), 263–279.
- https://doi.org/10.1111/j.0032-0862.2004.01010.x
- Zhu, Y., Wu, T., Xie, Y., Wu, Y., Deng, J., Cao, L., & Rao, Q. (2023). Screening of the acaricidal activity of essential oils against Panonychus citri (McGregor) (Acari: Tetranychidae). Agronomy (Basel, Switzerland), 13(2), 397.
- https://doi.org/10.3390/agronomy13020397
References
Ababutain, I. (2019). Antimicrobial activity and gas chromatography-mass spectrometry (GC-MS) analysis of Saudi Arabian Ocimum basilicum leaves extracts. Journal of Pure & Applied Microbiology, 13(2), 823–833. https://doi.org/10.22207/JPAM.13.2.17
Al-Azzazy, M. M., & Ghani, S. B. A. (2024). Field evaluation of the efficacy of copper nanoparticles against mites associated with orange trees. Brazilian Journal of Biology, 84. 1-7.
https://doi.org/10.1590/1519-6984.270451
Ali, H. M., & Fhaid, K. A. (2019). Field efficacy of pesticides against dust mites Oligonychus afrasiaticus (McGregor) (Acari: Tetranchidae) on date palm, hillawi cultivar. Basrah Journal of Agricultural Sciences, 32(2), 160–168.
https://doi.org/10.37077/25200860.2019.206
Almrsomy, Z. M. M., Al-Dahwy, S. S. J., & Ali, A.-A. J. (2020). Effect of fenpyroximate in normal and nanoparticles to the control of ghobar mite Oligonychus afrasiaticus (Mcgregor) (ACARI: Tetranychidae). Plant Archives, 20(1), 1293-1297.
Chutrtong, J., & Kularbphettong, K. (2019). Study on optimal conditions of lemongrass extraction. E3S Web of Conferences, 100, 00008.
https://doi.org/10.1051/e3sconf/201910000008
de Melo, J. P. R., da Camara, C. A. G., da Silva Lima, G., de Moraes, M. M., & Alves, P. B. (2018). Acaricidal properties of the essential oil from Aristolochia trilobata and its major constituents against the two-spotted spider mite (Tetranychus urticae). Canadian Journal of Plant Science, 98(6), 1342–1348. https://doi.org/10.1139/cjps-2018-0163
El-halawany, A., Sanad, A., & Rakha, M. (2017). Field evaluation of date palm dust mite, Oligonychus afrasiaticus (McGregor) control on date palm trees in New Valley governorate of Egypt. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control, 9(3), 129–134.
https://doi.org/10.21608/eajbsf.2017.17034
Fu, Q.-M., Zeng, B., Xiao, Q.-Y., He, B.-S., Huang, C.-X., & Bao, M.-H. (2021). Essential oils for the treatment of dust mites. E3S Web of Conferences, 271,04032.
https://doi.org/10.1051/e3sconf/202127104032
Gavanji, S., Jalalizand, A. R., Ali, J. K., & Larki, B. (2013). Comparative Acaricidal Efficacy of Sulfur and Nano Sulfur against Tetranychus urticae. International Journal of Scientific Research in Inventions and New Ideas, 1(2), 23–28.
Ghani, S. B. A., Al-Azzazy, M. M., Alhewairini, S. S., & Al-Deghairi, M. A. (2024). The miticidal activity of silver nanoparticles towards date palm mite (Oligonychus afrasiaticus (McGregor)): Efficacy, selectivity, and risk assessment. Brazilian Journal of Biology, 84, e261262.
https://doi.org/10.1590/1519-6984.261262
Hussain, S., Javed, W., Tajammal, A., Khalid, M., Rasool, N., Riaz, M., & Shah, S. A. A. (2023). Synergistic Antibacterial Screening of Cymbopogon citratus and Azadirachta indica: Phytochemical Profiling and Antioxidant and Hemolytic Activities. ACS Omega, 8, 19, 16600–16611. https://doi.org/10.1021/acsomega.2c06785
Jian, Y., Li, S., Li, D., Ning, C., Zhang, S., Jian, F., & Si, H. (2022). Evaluation of the in vitro acaricidal activity of ethanol extracts of seven Chinese medicinal herbs on Ornithonyssus sylviarum (Acari: Macronyssidae). Experimental & Applied Acarology, 87(1), 67–79.
https://doi.org/10.1007/s10493-022-00716-9
Johnson, D. V. (2010). Worldwide dispersal of the date palm from its homeland. Acta Horticurae, 882, 369–375.
https://doi.org/10.17660/ActaHortic.2010.882.42
Kemal, J., Zerihun, T., Alemu, S., Sali, K., Nasir, M., Abraha, A., & Feyera, T. (2020). In vitro acaricidal activity of selected medicinal plants traditionally used against ticks in eastern Ethiopia. Journal of Parasitology Research, 2020, 1–10.
https://doi.org/10.1155/2020/7834026
Khursheed, A., Rather, M. A., Jain, V., Wani, A. R., Rasool, S., Nazir, R., & Majid, S. A. (2022). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis, 173(Pt A), 105854. https://doi.org/10.1016/j.micpath.2022.105854
Latifian, M. (2017). Integrated pest management of date palm fruit pests: A review. Journal of Entomology, 14(3),112–121. https://doi.org/10.3923/je.2017.112.121
Lim, E. G., Roh, H. S., Coudron, T. A., & Park, C. G. (2011). Temperature-dependent fumigant activity of essential oils against two spotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 104(2), 414–419. https://doi.org/10.1603/EC10249
Luiz de Oliveira, J., Ramos Campos, E. V., & Fraceto, L. F. (2018). Recent developments and challenges for nanoscale formulation of botanical pesticides for use in sustainable agriculture. Journal of Agricultural and Food Chemistry, 66, 34, 8898–8913. https://doi.org/10.1021/acs.jafc.8b03183
Margulis-Goshen, K., & Magdassi, S. (2013). Nanotechnology: An advanced approach to the development of potent insecticides. Pp. 295–314. In Isaac Ishaaya, I., Palli, S. R., & Horowitz, A. R. (Editors). Advanced Technologies for Managing Insect Pests Dordrecht: Springer, 328pp. https://doi.org/10.1007/978-94-007-4497-4_15
Mirza, J. H., Kamran, M., & Alatawi, F. J. (2021). Phenology and abundance of date palm mite Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae) in Riyadh, Saudi Arabia. Saudi Journal of Biological Sciences, 28(8), 4348-4357
https://doi.org/10.1016/j.sjbs.2021.04.023
Mohammed, M., El-Shafie, H., & Munir, M. (2023). Development and validation of innovative machine learning models for predicting date palm mite infestation on fruits. Agronomy (Basel, Switzerland), 13(2), 494.
https://doi.org/10.3390/agronomy13020494
Ngegba, P. M., Cui, G., Khalid, M. Z., & Zhong, G. (2022). Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12(5), 600. https://doi.org/10.3390/agriculture12050600
Nisha Raj, S., Anooj, E. S., Rajendran, K., & Vallinayagam, S. (2021). A comprehensive review on regulatory invention of nano pesticides in Agricultural nano formulation and food system. Journal of Molecular Structure, 1239, 130517.
https://doi.org/10.1016/j.molstruc.2021.130517
Park, J.-H., & Lee, H.-S. (2018). Acaricidal target and mite indicator as color alteration using 3, 7-dimethy l-2, 6-octadienal and its derivatives derived from Melissa officinalis leaves. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-26536-9
Pohlit, A., Rezende, A., Lopes Baldin, E., Lopes, N., & de Andrade Neto, V. (2011). Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases - A review. Planta Medica, 77(6), 618–630. https://doi.org/10.1055/s-0030-1270949
Prischmann, D. A., James, D. G., Wright, L. C., Teneyck, R. D., & Snyder, W. E. (2005). Effects of chlorpyrifos and sulfur on spider mites (Acari: Tetranychidae) and their natural enemies. Biological Control: Theory and Applications in Pest Management, 33(3), 324–334.
https://doi.org/10.1016/j.biocontrol.2005.03.008
Ruiz-Jimenez, K. Z., Osorio-Osorio, R., Hernández-Hernández, L. U., Ochoa-Flores, A. A., Silva-Vazquez, R., & Mendez-Zamora, G. (2021). Acaricidal activity of plant extracts against the red palm mite Raoiella indica (Acari: Tenuipalpidae). Revista de La Sociedad Entomologica Argentina, 80(1), 33–39. https://doi.org/10.25085/rsea.800104
Senbill, H., Hassan, S. M., & Eldesouky, S. E. (2023). Acaricidal and biological activities of Titanium dioxide and Zinc oxide nanoparticles on the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) and their side effects on the predatory mite, Neoseiulus californicus (Acari: Phytoseiidae). Journal of Asia-Pacific Entomology, 26(1), 102027.
https://doi.org/10.1016/j.aspen.2022.102027
Williams, J. S., & Cooper, R. M. (2004). The oldest fungicide and newest phytoalexin – a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathology, 53(3), 263–279.
https://doi.org/10.1111/j.0032-0862.2004.01010.x
Zhu, Y., Wu, T., Xie, Y., Wu, Y., Deng, J., Cao, L., & Rao, Q. (2023). Screening of the acaricidal activity of essential oils against Panonychus citri (McGregor) (Acari: Tetranychidae). Agronomy (Basel, Switzerland), 13(2), 397.