Main Article Content

Abstract

This study examined the effects of nickel (Ni) at 0, 25, and 50 mg.L-1 concentrations, applied alone or in combination with salinity (represented by NaCl at 0, 100, and 200 mM concentrations), on the biochemical traits of date palm. Hydrogen peroxide (H2O2), malondialdehyde (MDA), membrane stability index (MSI), peroxidase (POD) activity, superoxide dismutase (SOD), and proline content were among the parameters evaluated. The results revealed significant effects of nickel and salinity on the studied biochemical markers. Nickel at 50 mg.L-1 significantly increased H2O2 (0.87 µmol. L-1) and MDA (2.46 nmol.g-1) levels, while decreasing MSI (75.85%). Moreover, it enhanced POD (25.09 U.min-1.g-1) and SOD (3.78 U. min-1.g-1) activity, as well as proline content (4.35 µmol.g-1). Salinity at 200 mM significantly increased H2O2 (0.90 µmol L-1) and MDA (2.54 nmol.g-1) levels, decreased MSI (77.69%), and increased POD (27.61 U. min-1.g-1) and SOD (3.77 U.min-1.g-1) activity, along with increased proline content (4.54 µmol.g-1). Additionally, the combined application of nickel and salinity, particularly at higher concentrations, resulted in significantly increased biochemical responses compared to individual treatments. The findings highlight the interactive effects of nickel and salinity on the oxidative and antioxidant mechanisms in date palm plants. This study contributes to our understanding of plant responses to abiotic stressors and provides insights for optimizing date palm cultivation under challenging environmental conditions.

Keywords

Antioxidants hydrogen peroxide Malondialdehyde Membrane stability index Peroxidase Proline Superoxide dismutase

Article Details

How to Cite
Gabash, H. M. ., Resan, A. Z. ., Awad, K. M., Suhim, A. A., & Abdulameer, A. H. . (2024). Biochemical Responses of Date Palm Phoenix dactylifera L. to Combined Stress of Salinity and Nickel. Basrah Journal of Agricultural Sciences, 37(1), 236–246. https://doi.org/10.37077/25200860.2024.37.1.18

References

  1. Akensous, F.-Z. & Meddich, A. (2022). Biostimulants as Innovative Tools to Boost Date Palm (Phoenix dactylifera L.) performance under Drought, Salinity, and Heavy Metal (Oid)s’ Stresses: A Concise Review. Sustainability, 14(23), 15984.
  2. https://doi.org/10.3390/su142315984
  3. Al-Alawi, R. A., Al-Mashiqri, J. H., Al-Nadabi, J. S. M., Al-Shihi, B. I., & Baqi, Y. (2017). Date palm tree (Phoenix dactylifera L.): Natural products and therapeutic options. Frontiers in Plant Science, 8, 845.
  4. https://doi.org/10.3389/fpls.2017.00845
  5. Al-Aradi, H. J., Al-Najjar, M. A., Awad, K. M., & Abass, M. H. (2020). Combination effect between lead and salinity on anatomical structure of date palm Phoenix dactylifera L. seedlings. Agrivita Journal of Agricultural Science, 42(3).
  6. https://doi.org/10.17503/agrivita.v42i3.2511
  7. Al-Qatrani, M. K. J., Al Khalifa, A. A. S., & Obaid, N. A. (2021). Effect of Jasmonic acid on stimulating the growth and development of date palm callus (Phoenix dactylifera L.) cultivar Shukar in vitro under salt stress conditions. IOP Conference Series. Earth and Environmental Science, 923(1), 012017.
  8. https://doi.org/10.1088/1755-1315/923/1/012017
  9. Amjad, M., Raza, H., Murtaza, B., Abbas, G., Imran, M., Shahid, M., Naeem, M. A., Zakir, A., & Iqbal, M. M. (2019). Nickel toxicity induced changes in nutrient dynamics and antioxidant profiling in two maize (Zea mays L.) hybrids. Plants, 9(1), 5.
  10. https://doi.org/10.3390/plants9010005
  11. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373–399.
  12. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  13. Awad, K. M., Salih, A. M., Khalaf, Y., Suhim, A. A., & Abass, M. H. (2019). Phytotoxic and genotoxic effect of Aluminum to date palm (Phoenix dactylifera L.) in vitro cultures. Journal, Genetic Engineering & Biotechnology, 17, 7.
  14. https://doi.org/10.1186/s43141-019-0007-2
  15. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207. https://doi.org/10.1007/bf00018060
  16. Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Pp. 764–775. In Methods in Enzymology. Volume 2, Elsevier. http://doi.org/10.1016/S0076-6879(55)02300-8
  17. Dghaim, R., Hammami, Z., Al Ghali, R., Smail, L., & Haroun, D. (2021). The mineral composition of date palm fruits (Phoenix dactylifera L.) under low to high salinity irrigation. Molecules (Basel, Switzerland), 26(23), 7361.
  18. https://doi.org/10.3390/molecules26237361
  19. Gajewska, E., Skłodowska, M., Słaba, M., & Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia Plantarum, 50(4), 653–659.
  20. https://doi.org/10.1007/s10535-006-0102-5
  21. Georgiadou, E. C., Kowalska, E., Patla, K., Kulbat, K., Smolińska, B., Leszczyńska, J., & Fotopoulos, V. (2018). Influence of heavy metals (Ni, cu, and Zn) on Nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Frontiers in Plant Science, 9.
  22. https://doi.org/10.3389/fpls.2018.00862
  23. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314. https://doi.org/10.1104/pp.59.2.309
  24. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry,48(12),909-930.
  25. https://doi.org/10.1016/j.plaphy.2010.08.016
  26. Hasanuzzaman, M., & Fujita, M. (2022). Plant responses and tolerance to salt stress: Physiological and molecular interventions. International Journal of Molecular Sciences, 23(9), 4810.
  27. https://doi.org/10.3390/ijms23094810
  28. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.
  29. https://doi.org/10.1016/0003-9861(68)90654-1
  30. Kastori, R., R., Putnik-Delić, M., I., & Maksimović, I., V. (2022). Functions of nickel in higher plants: A review. Acta agriculturae Serbica, 27(53), 89-101.
  31. http://doi.org/10.5937/AASer2253089K
  32. Khan, M. I. R., Khan, N. A., Masood, A., Per, T. S., & Asgher, M. (2016). Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Frontiers in Plant Science, 7, 44. https://doi.org/10.3389/fpls.2016.00044
  33. Kumar, S., Wang, M., Liu, Y., Fahad, S., Qayyum, A., Jadoon, S. A., Chen, Y., & Zhu, G. (2022). Nickel toxicity alters growth patterns and induces oxidative stress response in sweetpotato. Frontiers in Plant Science, 13, 1054924.
  34. https://doi.org/10.3389/fpls.2022.1054924
  35. Mahdi, A. S., Abd, A. M., & Awad, K. M. (2022). Effect of foliar application of nano-selenium on the anatomical characteristics of date palm Phoenix dactylifera L. barhi cultivar under salt stress. Basrah Journal of Agricultural Sciences, 35(2), 313–325. https://doi.org/10.37077/25200860.2022.35.2.24
  36. Mahdi, A. S., Abd, A. M., & Awad, K. M. (2023). The role of nano-selenium in alleviating the effects of salt stress in date palm trees (Phoenix dactylifera L.): A Fourier transform infrared (FTIR) spectroscopy study. BioNanoScience, 13(1), 74–80.
  37. https://doi.org/10.1007/s12668-022-01046-1
  38. Manna, I., Sahoo, S., & Bandyopadhyay, M. (2021). Effect of engineered nickel oxide nanoparticle on reactive oxygen species-nitric oxide interplay in the roots of Allium cepa L. Frontiers in Plant Science, 12, 586509.
  39. https://doi.org/10.3389/fpls.2021.586509
  40. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  41. Nahar, K., Rhaman, M. S., Parvin, K., Bardhan, K., Marques, D. N., García-Caparrós, P., & Hasanuzzaman, M. (2022). Arsenic-induced oxidative stress and antioxidant defense in plants. Stresses, 2(2), 179–209.
  42. https://doi.org/10.3390/stresses2020013
  43. Naheed, N., Abbas, G., Naeem, M. A., Hussain, M., Shabbir, R., Alamri, S., Siddiqui, M. H., & Mumtaz, M. Z. (2022). Nickel tolerance and phytoremediation potential of quinoa are modulated under salinity: multivariate comparison of physiological and biochemical attributes. Environmental Geochemistry and Health, 44(4), 1409–1424.
  44. https://doi.org/10.1007/s10653-021-01165-w
  45. Ryan, K. C., Guce, A. I., Johnson, O. E., Brunold, T. C., Cabelli, D. E., Garman, S. C., & Maroney, M. J. (2015). Nickel superoxide dismutase: structural and functional roles of His1 and its H-bonding network. Biochemistry, 54(4), 1016–1027.
  46. https://doi.org/10.1021/bi501258u
  47. Shahzad, B., Tanveer, M., Rehman, A., Cheema, S. A., Fahad, S., Rehman, S., & Sharma, A. (2018). Nickel; whether toxic or essential for plants and environment - A review. Plant Physiology and Biochemistry, 132, 641–651.
  48. https://doi.org/10.1016/j.plaphy.2018.10.014
  49. Singh, A., Kumar, J., & Kumar, P. (2008). Effects of plant growth regulators and sucrose on post-harvest physiology, membrane stability and vase life of cut spikes of gladiolus. Plant Growth Regulation, 55(3), 221–229.
  50. https://doi.org/10.1007/s10725-008-9278-3
  51. Spormann, S., Nadais, P., Sousa, F., Pinto, M., Martins, M., Sousa, B., Fidalgo, F., & Soares, C. (2023). Accumulation of Proline in Plants under Contaminated Soils—Are We on the Same Page? Antioxidants, 12(3), 666.
  52. https://doi.org/10.3390/antiox12030666
  53. Suhim, A. A. ., Awad, K. M. ., Jaffer, O. N. ., & Abass, M. H. (2023). The impact of salicylic and jasmonic acid in mitigating salinity stress on date palm Phoenix dactylifera L. Barhi Cv. Basrah Journal of Agricultural Sciences, 36(1), 120-130.
  54. https://doi.org/10.37077/25200860.2023.36.1.10
  55. Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Science: An International Journal of Experimental Plant Biology, 151(1), 59–66.
  56. https://doi.org/10.1016/s0168-9452(99)00197-1
  57. Yusuf, M., Fariduddin, Q., Varshney, P., & Ahmad, A. (2012). Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environmental Science and Pollution Research International, 19(1), 8–18. https://doi.org/10.1007/s11356-011-0531-3
  58. Zaid, A., Mohammad, F., Wani, S. H., & Siddique, K. M. H. (2019). Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicology and Environmental Safety, 180, 575–587. https://doi.org/10.1016/j.ecoenv.2019.05.042