Main Article Content

Abstract

This study investigated the impact of freeze-dried coacervates at various concentrations (0.5, 1, and 1.5%) on physicochemical and microbiological properties of orange juice. Either 60% ethanol freeze-dried coacervates (EFC) or absolute ethanol freeze-dried coacervates (AFC) were used. The addition of EFC or AFC to orange juice did not significantly (p<0.05) affect pH, viscosity, or electric conductivity, as pH was unchanged for a 0.5% concentration and slightly increased from 3.99 to 4.01 at 1% and 1.5% concentrations. After adding AFC and EFC, viscosity were 52, 53, and 53 mPas at 0.5, 1, and 1.5% concentrations, respectively. Electric conductivity increased from 0.278 s.m-1 (control) to 0.334, 0.347, and 0.375 s.m-1 at 0.5, 1, and 1.5% concentrations after adding EFC, while were 0.325, 0.335, and 0.373 s.m-1 at the same concentration after adding AFC, respectively. However, after adding EFC, total phenolic content increased to 77.25, 115.96, and 154.95 mg.100mL-1, total flavonoid content (TFC)increased to 34.76, 52.18, and 69.73 mg.100mL-1, and antioxidant activity (AA) enhanced to 70.36, 74.36, and 79.58% at concentrations 0.5, 1, and 1.5%, respectively. Also, after adding AFC, total phenolic content increased to 79.26, 117.78, and 156.25 mg.100mL-1, TFC increased to 35.67, 53.00, and 70.31 mg.100mL-1, and AA enhanced to 71.65, 75.84, and 81.21% at concentrations 0.5, 1, and 1.5%, respectively. At concentrations 0.5, 1, and 1.5%, EFC decreased total plate count (TPC) to 2.12, 2.02, and 1.78 log cfu.mL-1, respectively and mold and yeast counts decreased to 1.5, 1.35, and 1.1 log cfu.mL-1, respectively. Also, adding AFC caused TPC to decrease to 2.18, 2.04, and 1.84 log cfu.mL-1, respectively and mold and yeast count decreased to 1.53, 1.33, and 1.12 log cfu.mL-1, respectively. Overall, the results indicate that adding EFC or AFC to fresh orange juice can enhance its nutritional and microbiological qualities without degrading its sensory qualities.

Keywords

Cassia javanica Coacervates Orange juice

Article Details

How to Cite
Younis, M. I. ., Xiaofeng , R. ., Alkanan, Z. T. ., Altemimi , A. B. ., Mahmoud, K. F. ., Siam, S. H. ., & Abedelmaksoud , T. G. . (2024). Enhancing Quality Properties of Fresh Orange Juice through the Addition of Freeze-Dried Cassia javanica Extracts’ Coacervates. Basrah Journal of Agricultural Sciences, 37(1), 15–35. https://doi.org/10.37077/25200860.2024.37.1.02

References

  1. Abedelmaksoud, T. G., Hesarinejad, M. A., & Shokrollahi Yancheshmeh, B. (2022). The effect of cold plasma on the enzymatic activity and quality characteristics of mango pulp. Research and Innovation in Food Science and Technology, 10(4), 341-350.
  2. https://doi.org/10.22101/JRIFST.2021.247462.1183
  3. Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., & Feyissa, A. H. (2019). Impact of ohmicsonication treatment on pectinmethylesterase in not-from-concentrate orange juice. Journal of Food Science and Technology, 56, 3951-3956.
  4. https://doi.org/10.1007/s13197-019-03834-2
  5. Aghajanzadeh, S., Ganjeh, M., Jafari, S. M., Kashaninejad, M., & Ziaiifar, A. M. (2020). Prediction of the changes in physicochemical properties of key lime juice during IR thermal processing by artificial neural networks. Journal of Food and Bioprocess Engineering, 3(2), 95-100.
  6. https://doi.org/10.22059/JFABE.2020.306719.1057
  7. Agulheiro-Santos, A. C., Ricardo‐Rodrigues, S., Laranjo, M., Melgão, C., & Velázquez, R. (2022). Non‐destructive prediction of total soluble solids in strawberry using near infrared spectroscopy. Journal of the Science of Food and Agriculture, 102(11), 4866-4872. https://doi.org/10.1002/jsfa.11849
  8. Ahmed, H. S., Sedeeq, A. M., & Khalil, T. A. (2022). Electrical conductivity application in ohmic pasteurization of orange juice. Mesopotamia Journal of Agriculture, 50(2), 8-20.
  9. https://doi.org/10.33899/magrj.2022.132958.1165
  10. Alam, A., Shaheen, S., Ashfaq, M., All, M., Watto, J. I., Anjum, M. A., Khan, F., Maqsood, S., & Sajjad, M. (2019). Microbial examination of mould and yeast in fruit juices. Pakistan Journal of Agricultural Sciences, 56(3), 715-721.
  11. https://doi.org/10.21162/PAKJAS/19.6157
  12. Alemzadeh, I. (2013). Encapsulation of peppermint oil with arabic gum-gelatin by complex coacervation method. International journal of engineering, 26(8), 807-814.
  13. https://doi.org/10.5829/idosi.ije.2013.26.08b.01
  14. Al-Hilphy, A. R., Altemimi, A. B., Alkanan, Z. T., Eweys, A. S., Haoujar, I., Cacciola, F., & Abedelmaksoud, T. G. (2023). Vacuum ohmic heating: a promising technology for the improvement of tomato paste processing, safety, quality and storage stability. Basrah Journal of Agricultural Sciences, 36(1), 214-237.
  15. https://doi.org/10.37077/25200860.2023.36.1.18
  16. Al-Jammaas, O., Sultan, S., & Mahmood, W. (2019). Effect of enzymatic treatment on viscosity and on pectic substances of tomato juice. Tikrit Journal for Agricultural Sciences, 19(1), 84-92.
  17. https://doi.org/10.13140/RG.2.2.27884.31364
  18. Al-Khayri, J. M., Banadka, A., Nandhini, M., Nagella, P., Al-Mssallem, M. Q., & Alessa, F. M. (2023). Essential oil from Coriandrum sativum: A review on its phytochemistry and biological activity. Molecules, 28(2), 696.
  19. https://doi.org/10.3390/molecules28020696
  20. Amaro, K. C., & Tadini, C. C. (2021). The optimal time-temperature conditions for orange juice microwave− assisted pasteurization. LWT, 150, 111907.
  21. https://doi.org/10.1016/j.lwt.2021.111907
  22. Arenas-Jal, M., Suñé-Negre, J. M., & García-Montoya, E. (2020). An overview of microencapsulation in the food industry: Opportunities, challenges, and innovations. European Food Research and Technology, 246, 1371-1382.
  23. https://doi.org/10.1007/s00217-020-03496-x
  24. Bagci, U., & Temiz, A. (2011). Microbiological quality of fresh-squeezed orange juice and efficacy of fruit surface decontamination methods in microbiological quality. Journal of Food Protection, 74, 8, 1238–1244.
  25. https://doi.org/doi:10.4315/0362-028X.JFP-11-021
  26. Baioumy, A. A., & Abedelmaksoud, T. G. (2021). Quality properties and storage stability of beef burger as influenced by addition of orange peels (albedo). Theory and practice of meat processing, 6(1), 33-38. https://doi.org/10.21323/2414-438X-2021-6-1-33-38
  27. Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive reviews in food science and food safety, 15(1), 143-182.
  28. https://doi.org/10.1111/1541-4337.12179
  29. Česonienė, L., Liaudanskas, M., & Žvikas, V. (2022). Investigations of total phenolic compounds in berries and leaves of Actinidia arguta and Actinidia melanandra. Section 1. Research of the Chemical Composition of Medicinal Plant Raw Materials and The Prospects of Creating Medicinal and Dietary Products Based on It, 5.
  30. https://hdl.handle.net/20.500.12512/116134
  31. Delshadi, R., Bahrami, A., Tafti, A. G., Barba, F. J., & Williams, L. L. (2020). Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology, 104, 72-83.
  32. https://doi.org/10.1016/j.tifs.2020.07.004
  33. Efenberger-Szmechtyk, M., Nowak, A., & Czyzowska, A. (2021). Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61(1), 149-178.
  34. https://doi.org/10.1080/10408398.2020.1722060
  35. Elsayed, N., Marrez, D. A., Ali, M. A., El-Maksoud, A. A. A., Cheng, W., & Abedelmaksoud, T. G. (2022). Phenolic profiling and in-vitro bioactivities of corn (Zea mays L.) tassel extracts by combining enzyme-assisted extraction. Foods, 11(14), 2145.
  36. https://doi.org/10.3390/foods11142145
  37. Falleh, H., Jemaa, M. B., Saada, M., & Ksouri, R. (2020). Essential oils: A promising eco-friendly food preservative. Food Chemistry, 330, 127268.
  38. https://doi.org/10.1016/j.foodchem.2020.127268
  39. Falleh, H., Ben Jemaa, M., Djebali, K., Abid, S., Saada, M., & Ksouri, R. (2019). Application of the mixture design for optimum antimicrobial activity: Combined treatment of Syzygium aromaticum, Cinnamomum zeylanicum, Myrtus communis, and Lavandula stoechas essential oils against Escherichia coli. Journal of Food Processing and Preservation, 43(12), e14257.
  40. https://doi.org/10.1111/jfpp.14257
  41. Fernández-Vázquez, R., Hewson, L., Fisk, I., Vila, D. H., Mira, F. J. H., Vicario, I. M., & Hort, J. (2014). Colour influences sensory perception and liking of orange juice. Flavour, 3, 1-8.
  42. https://doi.org/10.1186/2044-7248-3-1
  43. García-Girón, J., Fernández-Aláez, M., & Fernández-Aláez, C. (2019). Redundant or complementary? Evaluation of different metrics as surrogates of macrophyte biodiversity patterns in Mediterranean ponds. Ecological Indicators, 101, 614-622.
  44. https://doi.org/10.1016/j.ecolind.2019.01.062
  45. Gomes, A., Costa, A. L. R., Rodrigues, P. D., de Castro, R. J. S., & Silva, E. K. (2022). Sonoprocessing of freshly squeezed orange juice: Ascorbic acid content, pectin methylesterase activity, rheological properties and cloud stability. Food Control, 131, 108391.
  46. https://doi.org/10.1016/j.foodcont.2021.108391
  47. Hassan, N. A., Darwesh, O. M., Smuda, S. S., Altemimi, A. B., Hu, A., Cacciola, F., Haoujar, I. & Abedelmaksoud, T. G. (2022). Recent trends in the preparation of nano-starch particles. Molecules, 27(17), 5497.
  48. https://doi.org/10.3390/molecules27175497
  49. Ikram, E. H. K., Eng, K. H., Jalil, A. M. M., Ismail, A., Idris, S., Azlan, A., Nazri, H. S. M., Diton, N. A. M., & Mokhtar, R. A. M. (2009). Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. Journal of food Composition and Analysis, 22(5), 388-393.
  50. https://doi.org/10.1016/j.jfca.2009.04.001
  51. Islam, M. K., Khan, M. Z. H., Sarkar, M. A. R., Absar, N., & Sarkar, S. K. (2013). Changes in acidity, TSS, and sugar content at different storage periods of the postharvest mango (Mangifera indica L.) influenced by Bavistin DF. International Journal of Food Science, 2013. Article ID 939385
  52. https://doi.org/10.1155/2013/939385
  53. Katariya, P., Arya, S. S., & Pandit, A. B. (2020). Novel, non-thermal hydrodynamic cavitation of orange juice: Effects on physical properties and stability of bioactive compounds. Innovative Food Science & Emerging Technologies, 62, 102364.
  54. https://doi.org/10.1016/j.ifset.2020.102364
  55. Lee, H. S. (1993). HPLC method for separation and determination of nonvolatile organic acids in orange juice. Journal of Agricultural and Food Chemistry, 41(11), 1991-1993. https://doi.org/10.1021/jf00035a033
  56. Ma, H., Li, X., Wei, M., Zeng, G., Hou, S., Li, D., & Xu, H. (2020). Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere, 239, 124706.
  57. https://doi.org/10.1016/j.chemosphere.2019.124706
  58. Ma, S., Kim, C., Neilson, A. P., Griffin, L. E., Peck, G. M., O'Keefe, S. F., & Stewart, A. C. (2019). Comparison of common analytical methods for the quantification of total polyphenols and flavanols in fruit juices and ciders. Journal of food science, 84(8), 2147-2158.
  59. https://doi.org/10.1111/1750-3841.14713
  60. Mahanta, B. P., Bora, P. K., Kemprai, P., Borah, G., Lal, M., & Haldar, S. (2021). Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Research International, 145, 110404.
  61. https://doi.org/10.1016/j.foodres.2021.110404
  62. Meléndez-Martínez, A. J., Gómez-Robledo, L., Melgosa, M., Vicario, I. M., & Heredia, F. J. (2011). Color of orange juices in relation to their carotenoid contents as assessed from different spectroscopic data. Journal of Food Composition and Analysis, 24(6), 837-844.
  63. https://doi.org/10.1016/j.jfca.2011.05.001
  64. Mohamed, R. M., Ali, M. R., Smuda, S. S., & Abedelmaksoud, T. G. (2021). Utilization of sugarcane bagasse aqueous extract as a natural preservative to extend the shelf life of refrigerated fresh meat. Brazilian Journal of Food Technology, 24. https://doi.org/10.1590/1981-6723.16720
  65. Mohammadalinejhad, S., & Kurek, M. A. (2021). Microencapsulation of anthocyanins—Critical review of techniques and wall materials. Applied sciences, 11(9), 3936.
  66. https://doi.org/10.3390/app11093936
  67. Mohsen, S. M., Murkovic, M., El-Nikeety, M. M., & Abedelmaksoud, T. G. (2013). Ohmic heating technology and quality characteristics of mango pulp. Journal of Food Industries and Nutrition Science, 3(1), 69-83.
  68. https://graz.elsevierpure.com/en/publications/ohmic-heating-technology-and-quality-characteristics-of-mango-pul
  69. Muhammad Zahir, S. A., Yahaya, O. K., & Omar, A. F. (2021). Correlating the natural color of tropical fruit juice with its pH. Color Research & Application, 46(2), 467-476. https://doi.org/10.1002/col.22575
  70. Napiórkowska, A., & Kurek, M. (2022). Coacervation as a novel method of microencapsulation of essential oils-A review. Molecules, 27(16). 5142.
  71. https://doi.org/10.3390/molecules27165142
  72. Nathaniel, S. P. (2020). Modelling urbanization, trade flow, economic growth and energy consumption with regards to the environment in Nigeria. Geo Journal, 85(6), 1499-1513.
  73. https://doi.org/10.1007/s10708-019-10034-0
  74. Niu, L. Y., Wu, J. H., Liao, X. J., Fang, C. H. E. N., Wang, Z. F., Zhao, G. H., & Hu, X. S. (2008). Physicochemical characteristics of orange juice samples from seven cultivars. Agricultural Sciences in China, 7(1), 41-47.
  75. https://doi.org/10.1016/S1671-2927(08)60020-6
  76. Rašković, A., Milanović, I., Pavlović, N., Ćebović, T., Vukmirović, S., & Mikov, M. (2014). Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC complementary and alternative medicine, 14(1), 1-9. https://doi.org/10.1186/1472-6882-14-225
  77. Robertson, G. L., & Samaniego‐Esguerra, C. M. (1990). Effect of soluble solids and temperature on ascorbic acid degradation in lemon juice stored in glass bottles. Journal of Food Quality, 13(5), 361-374.
  78. https://doi.org/10.1111/j.1745-4557.1990.tb00032.x
  79. Rojas-Moreno, S., Cárdenas-Bailón, F., Osorio-Revilla, G., Gallardo-Velázquez, T., & Proal-Nájera, J. (2018). Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. Journal of food Measurement and Characterization, 12, 650-660. https://doi.org/10.1007/s11694-017-9678-z
  80. Sahoo, P., & Chakraborty, S. (2023). Influence of pulsed light, ultrasound, and series treatments on quality attributes, pectin methyl esterase, and native flora inactivation in sweet orange juice (Citrus sinensis L. Osbeck). Food and Bioprocess Technology, 16, 2095–2112.
  81. https://doi.org/10.1007/s11947-023-03042-z
  82. Sari, S., Avci, A., Koçak, E., Kart, D., Sabuncuoğlu, S., Doğan, İ. S., Özdemir, Z., Bozbey, İ., Karakurt, A., Saraç. S., & Dalkara, S. (2020). Antibacterial azole derivatives: Antibacterial activity, cytotoxicity, and in silico mechanistic studies. Drug Development Research, 81(8), 1026-1036.
  83. https://doi.org/10.1002/ddr.21721
  84. Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., & Huang, Q. (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International journal of biological macromolecules, 107, 1800-1810.
  85. https://doi.org/10.1016/j.ijbiomac.2017.10.044
  86. Sharmila, G., Nikitha, V. S., Ilaiyarasi, S., Dhivya, K., Rajasekar, V., Kumar, N. M., Muthukumaran, K., & Muthukumaran, C. (2016). Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Industrial crops and Products, 84, 13-21.
  87. https://doi.org/10.1016/j.indcrop.2016.01.010
  88. Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, 78, 34-60.
  89. https://doi.org/10.1016/j.tifs.2018.05.018
  90. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  91. Song, Q., Li, R., Song, X., Clausen, M. P., Orlien, V., & Giacalone, D. (2022). The effect of high-pressure processing on sensory quality and consumer acceptability of fruit juices and smoothies: A review. Food Research International, 157, 111250.
  92. https://doi.org/10.1016/j.foodres.2022.111250
  93. Stinco, C. M., Sentandreu, E., Mapelli-Brahm, P., Navarro, J. L., Vicario, I. M., & Meléndez-Martínez, A. J. (2020). Influence of high-pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, 331, 127259.
  94. https://doi.org/10.1016/j.foodchem.2020.127259
  95. Stojanović-Radić, Z., Pejčić, M., Joković, N., Jokanović, M., Ivić, M., Šojić, B., Škaljac, S., Stojanović, P., & Mihajilov-Krstev, T. (2018). Inhibition of Salmonella Enteritidis growth and storage stability in chicken meat treated with basil and rosemary essential oils alone or in combination. Food Control, 90, 332-343.
  96. https://doi.org/10.1016/j.foodcont.2018.03.013
  97. Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International journal of biological macromolecules, 121, 1276-1286.
  98. https://doi.org/10.1016/j.ijbiomac.2018.10.144
  99. USDA. (1983). United States standards for grades of orange juice. Effective date January, 13.
  100. Valková, V., Ďúranová, H., Galovičová, L., Vukovic, N. L., Vukic, M., & Kačániová, M. (2021). In vitro antimicrobial activity of lavender, mint, and rosemary essential oils and the effect of their vapours on growth of Penicillium spp. in a bread model system. Molecules, 26(13), 3859.
  101. https://doi.org/10.3390/molecules26133859
  102. Veiga, R. D. S. D., Aparecida Da Silva-Buzanello, R., Corso, M. P., & Canan, C. (2019). Essential oils microencapsulated obtained by spray drying: a review. Journal of Essential Oil Research, 31(6), 457-473.
  103. https://doi.org/10.1080/10412905.2019.1612788
  104. Vianna, T. C., Marinho, C. O., Júnior, L. M., Ibrahim, S. A., & Vieira, R. P. (2021). Essential oils as additives in active starch-based food packaging films: A review. International Journal of Biological Macromolecules, 182, 1803-1819.
  105. https://doi.org/10.1016/j.ijbiomac.2021.05.170
  106. Waley, A., Shaltout, O., Yazeed, A. E., AL-bakry, A., & Zeitoun, A. (2020). Bioactive compounds and physicochemical properties of fruit–orange juice mixes with rosemary extract. Alexandria Science Exchange Journal, 41(2), 141-153.
  107. https://doi.org/10.21608/asejaiqjsae.2020.87197
  108. Wojtunik-Kulesza, K., Oniszczuk, A., Oniszczuk, T., Combrzyński, M., Nowakowska, D., & Matwijczuk, A. (2020). Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients, 12(5), 1401.
  109. https://doi.org/10.3390/nu12051401
  110. Yang, X., Gao, N., Hu, L., Li, J., & Sun, Y. (2015). Development and evaluation of novel microcapsules containing poppy-seed oil using complex coacervation. Journal of Food Engineering, 161, 87-93. https://doi.org/10.1016/j.jfoodeng.2015.03.027
  111. Younis, M. I., Ren, X., Alzubaidi, A. K., Mahmoud, K. F., Altemimi, A. B., Cacciola, F., Raza, H., Pratap-Singh, A & Abedelmaksoud, T. G. (2022). Optimized green extraction of polyphenols from Cassia javanica L. petals for their application in sunflower oil: Anticancer and antioxidant properties. Molecules, 27(14), 4329.
  112. https://doi.org/10.3390/molecules27144329
  113. Yu, W., Cui, J., Zhao, S., Feng, L., Wang, Y., Liu, J., & Zheng, J. (2021). Effects of high-pressure homogenization on pectin structure and cloud stability of not-from-concentrate orange juice. Frontiers in Nutrition, 8, 647748.
  114. https://doi.org/10.3389/fnut.2021.647748

Most read articles by the same author(s)