Main Article Content

Abstract

Ohmic heating (OH) is an electrothermal technology used to inactivate enzyme and microbial activities. This work aimed to study the impact of Ohmic Heating Under Vacuum (OHUV) which compared to conventional heating (CH) as well as storage stability at 5°C and 25 °C on microbial safety, and nutritional quality. The evaluation parameters were pH, titratable acidity, TSS, lycopene, ascorbic acid, PME, HMF, and microbiological activity. The obtained results showed that tomato paste samples that were treated by OHUV are significantly superior to CH in terms of all physicochemical and microbiological characteristics, as well as being the least harmful during storage in both transparent and dark packages. The results showed the changes in ascorbic acid, lycopene, and HMF values that were treated by OHUV at 25 °C and filled in transparent package are most affected compared to other treated samples. On the other hand, tomato paste samples stored in dark packages at 5 °C performed significantly better than those subjected to CH under the same conditions and activated PME the most had higher ascorbic acid and lycopene and fewer changes in HMF during storage time for 90 days. OHUV found to be a good alternative treatment in the production of tomato paste.

Keywords

HMF Ohmic heating Paste PME Tomato

Article Details

How to Cite
Al-Hilphy, A. R. ., Altemimi, A. B. ., Alkanan, Z. T. ., Eweys, A. S. ., Haoujar, I. ., Cacciola, F. ., & Abedelmaksoud, T. G. . (2023). Vacuum Ohmic Heating: A Promising Technology for the Improvement of Tomato Paste Processing, Safety, Quality and Storage Stability. Basrah Journal of Agricultural Sciences, 36(1), 214–237. https://doi.org/10.37077/25200860.2023.36.1.18

References

  1. Abdullah, M. A., Al Dajah, S., Abu Murad, A. A., El-Salem, A. M., & Khafajah, A. M. (2019). Extraction, purification, and characterization of lycopene from Jordanian vine tomato cultivar, and study of its potential natural antioxidant effect on samen baladi. Current Research in Nutrition and Food Science, 7(2), 532-546
  2. https://doi.org/10.12944/CRNFSJ.7.2.22
  3. Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., & Feyissa, A. H. (2018). Effect of ohmic heating parameters on inactivation of enzymes and quality of not-from-concentrate mango juice. Asian Journal of Scientific Research, 11(3), 383-392.
  4. https://doi.org/10.3923/ajsr.2018.383.392
  5. Aghajanzadeh, S., Kashaninejad, M., & Ziaiifar, A. M. (2017). Cloud stability of sour orange juice as affected by pectin methylesterase during come up time: Approached through fractal dimension. International Journal of food Properties, 20, 1-12
  6. https://doi.org/10.1080/10942912.2017.1373124
  7. Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., & Gan, S. H. (2021). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods, 10(1), 45.
  8. https://doi.org/10.3390/foods10010045
  9. Alkanan, Z. T., Altemimi, A. B., Al-Hilphy, A. R., Cacciola, F., & Ibrahim, S. A. (2021a). Application and effects of ohmic-vacuum combination heating on the quality factors of tomato paste. Foods, 10(12), 2920
  10. https://doi.org/10.3390/foods10122920
  11. Alkanan, Z. T., Altemimi, A. B., Al-Hilphy, A. R., Watson, D. G., & Pratap-Singh, A. (2021b). Ohmic heating in the food industry: Developments in concepts and applications during 2013-2020. Applied Sciences, 11(6), 2507
  12. https://doi.org/10.3390/app11062507
  13. Anese, M., Manzocco, L., Nicoli, C. M., & Lerici, R. C. (1999). Antioxidant properties of tomato juice as affected by heating. Journal of the Science of Food and Agriculture, 79, 750-754.
  14. https://doi.org/10.1002/(SICI)1097-0010(199904)79:5<750::AID-JSFA247>3.0.CO;2-A
  15. AOAC. (2016). Official Methods of Analysis of AOAC. International; Rockville, M.D., Ed.; AOAC International: Rockville, MA, USA. http:// www. eoma. aoac.org/ metho ds/ info
  16. Apaiah, R. K., & Barringer, S. A. (2001). Quality loss during tomato paste production versus sauce storage. Journal of Food Processing and Preservation, 25(4), 237-250
  17. https://doi.org/10.1111/j.1745-4549.2001.tb00458.x
  18. Asgar, A. (2020). Effect of storage temperature and type of packaging on physical and chemical quality of carrot. In IOP Conference Series: Earth and Environmental Science, 443(1), 012002. IOP Publishing.
  19. https://doi.org/10.1088/1755-1315/443/1/012002
  20. Bazani, E. J., Barreto, M. S., Demuner, A. J., Dos Santos, M. H., Cerceau, C. I., Blank, D. E., & Stringheta, P. C. (2021). Smarthone application for total phenols content and antioxidant determination in tomato, strawberry, and coffee employing digital imaging. Food Analytical Methods, 14(4), 631-640.‏
  21. https://doi.org/10.1007/s12161-020-01907-z
  22. Buajaila, F., Cowan, J. S., Inglis, D., Carpenter-Boggs, L., & Miles, C. (2021). Tomato growth, yield, and quality response to mixed chemical–organic fertilizers and grafting treatments in a high tunnel environment. Canadian Journal of Plant Science, 102(1), 33-48
  23. https://doi.org/10.1139/cjps-2020-0342
  24. Choi, E. J., Lee, K. A., Kim, B. S., & Ku, K. H. (2012). Effect of pre-treatment and storage conditions on the quality characteristics of ginger paste. Preventive Nutrition and Food Science, 17, 46-52.
  25. https://doi.org/10.3746/pnf.2012.17.1.046
  26. Cohen, E., Birk, Y., Mannheim, C. H., & Saguy, I. S. (1998). A rapid method to monitor quality of apple juice during thermal processing. Leb-ensmittel-Wissenschaft und-Technologie, 31, 612–616.
  27. https://doi.org/10.1006/fstl.1998.0385
  28. Collins, E. J., Bowyer, C., Tsouza, A., & Chopra, M. (2022). Tomatoes: an extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. Biology, 11(2), 239
  29. https://doi.org/10.3390/biology11020239
  30. D’Evoli, L., Lombardi-Boccia, G., & Lucarini, M. (2013). Influence of heat treatments on carotenoid content of cherry tomatoes. Foods, 2(3), 352-363.
  31. https://doi.org/10.3390/foods2030352
  32. Dewantara, A., Bastian, V., & Maulida, D. (2022). Analysis of alpha lipoic acid in tomatoes (Solanum lycopersicum) as a source of antioxidants for the human body. Extra Territorial, 1(1), 19-23.‏
  33. https://doi.org/10.54482/teritorial.v1i01.65
  34. Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010-3014.
  35. https://doi.org/10.1021/jf0115589
  36. Distefano, M., Arena, E., Mauro, R. P., Brighina, S., Leonardi, C., Fallico, B., & Giuffrida, F. (2020). Effects of genotype, storage temperature and time on quality and compositional traits of cherry tomato. Foods, 9(12), 1729
  37. https://doi.org/10.3390/foods9121729
  38. Eweys, A. S., Zhao, Y. S., & Darwesh, O. M. (2022). Improving the antioxidant and anticancer potential of Cinnamomum cassia via fermentation with Lactobacillus plantarum. Biotechnology Reports, 36, e00768.
  39. https://doi.org/10.1016/j.btre.2022.e00768
  40. Famurewa, J. A. V., Ibidapo, P. O., & Olaifa, Y. (2013). Storage stability of tomato paste packaged in plastic bottle and polythene stored in ambient temperature. International J of Applied Science and Technology, 3(6), 34–42.‏
  41. FAOSTAT. (2019). Food and Agriculture Organization of the United Nations.
  42. http://fao.org/faostat/en
  43. Francis, J. (2015). Effects of light on riboflavin and ascorbic acid in freshly expressed human milk. Journal of Nutritional Health & Food Engineering, 2(6), 1-3.
  44. https://doi.org/10.15406/jnhfe.2015.02.00083
  45. Gould, W. A. (1992). Tomato production, processing and technology. 3rd Edition. Baltimore, Woodhead Publishing, 550pp.
  46. Hmiz, D. J., Davarynejad, G., Abedi, B., & Ithbayyib, I. J. (2019). Effect of the root zone temperature and salt stress on plant growth, main branches and some other chemical characteristics of tomato fruit. Basrah Journal of Agricultural Sciences, 32, 170-181.
  47. https://doi.org/10.37077/25200860.2019.153
  48. Hsu, K. C. (2008). Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. LWT-Food Science and Technology, 41(3), 450-459
  49. https://doi.org/10.1016/j.lwt.2007.03.022
  50. Jafari, S. M., Ghanbari, V., Dehnad, D., & Ganje, M. (2021). Improving the storage stability of tomato paste by the addition of encapsulated olive leaf phenolics and experimental growth modeling of A. flavus. International Journal of Food Microbiology, 338, e109018
  51. https://doi.org/10.1016/j.ijfoodmicro.2020.109018
  52. Keyser, M., Műller, I. A., Cilliers, F. P., Nel, W., & Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies, 9(3), 348-354.
  53. https://doi.org/10.1016/j.ifset.2007.09.002
  54. Khan, U. M., Sevindik, M., Zarrabi, A., Nami, M., Ozdemir, B., Kaplan, D. N., & Sharifi-Rad, J. (2021). Lycopene: Food sources, biological activities, and human health benefits. Oxidative Medicine and Cellular Longevity. 2021, Article ID 2713511.
  55. https://doi.org/10.1155/2021/2713511
  56. Kimball, D. A. (1999). Citrus processing: A complete guide. 2nd ed., Gaithersburg, MD, Aspen Publishers Inc. 450pp.
  57. https://doi.org/10.1007/978-1-4615-4973-4
  58. Kiralan, M., & Ketenoglu, O. (2022). Utilization of Tomato (Solanum lycopersicum) by-products: An overview. Pp 799-818. In: Ramadan, M. F., & Farag, M. A. (Eds.). Mediterranean Fruits Bio-wastes. Springer, Cham. 1443pp.
  59. https://doi.org/10.1007/978-3-030-84436-3_34
  60. Leizerson, S., & Shimoni, E. (2005). Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. Journal of Agricultural and Food Chemistry, 53(10), 4012-4018
  61. https://doi.org/10.1021/jf047857q
  62. Lin, C. H., & Chen, B. H. (2005). Stability of carotenoids in tomato juice during storage. Food Chemistry, 90(4), 837-846.
  63. https://doi.org/10.1016/j.foodchem.2004.05.031
  64. Maity, T., & Raju, P. S. (2015). Development of shelf stable tomato rasam paste using hurdle technology. International Food Research Journal, 22(1), 171-177.
  65. https://www.semanticscholar.org/paper/Development-of-shelf-stable-tomato-rasam-paste-Maity-Raju/7f7b5d11b6bc209fe3df5f6cb4993ae5e3a18a53
  66. Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2020). Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends in Food Science & Technology, 97, 451-465
  67. https://doi.org/10.1016/j.tifs.2020.01.015
  68. Makroo, H. A., Saxena, J., Rastogi, N. K., & Srivastava, B. (2017). Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: Effects of the treatment on pH, lycopene, total phenolic content, and color of the juice. Journal of Food Processing and Preservation, 41(6), 1-9.
  69. https://doi.org/10.1111/jfpp.13271
  70. Markovic, K., Hruskar, M., & Basic, N. (2007). Stability of lycopene in tomato purée during storage. Acta Alimentaria, 36, 89-98.
  71. https://doi.org/10.1556/AAlim.36.2007.1.10
  72. Martínez-Hernández, G. B., Boluda-Aguilar, M., Taboada-Rodríguez, A., Soto-Jover, S., Marín-Iniesta, F., & López-Gómez, A. (2016). Processing, packaging, and storage of tomato products: Influence on the lycopene content. Food Engineering Reviews, 8(1), 52-75.
  73. https://doi.org/10.1007/s12393-015-9113-3
  74. Mgaya-Kilima, B., Remberg, S. F., Chove, B. E., & Wicklund, T. (2015). Physicochemical and antioxidant properties of roselle-mango juice blends; effects of packaging materials, storage temperature and time. Journal of Food Science and Nutrition, 3(2), 100-109.
  75. https://doi.org/10.1002/fsn3.174
  76. Moreno, J., Simpson, R., Pizarro, N., Pavez, C., Dorvil, F., Petzold, G., & Bugueño, G. (2013). Influence of ohmic heating/osmotic dehydration treatments on polyphenoloxidase inactivation, physical properties and microbial stability of apples (cv. Granny Smith). Innovative Food Science & Emerging Technologies, 20, 198-207
  77. https://doi.org/10.1016/j.ifset.2013.06.006
  78. Nwanekezi, E. C., & Onyeali, N. O. (2005). Effect of chemical preservation on the shelf-life of bottled intermediate moisture tomato paste stored at ambient temperature. Nigerian Food Journal, 23(1), 183-192
  79. https://doi.org/10.4314/nifoj.v23i1.33616
  80. Olaniran, A. F., Abiose, S. H., & Adeniran, A. H. (2015). Biopreservative effect of ginger (Zingiber officinale) and garlic powder (Allium sativum) on tomato paste. Journal of Food Safety, 35(4), 440-452
  81. https://doi.org/10.1111/jfs.12193
  82. Ordóñez-Santos, L. E., Vázquez-Odériz, L., Arbones-Maciñeira, E., & Romero-Rodríguez, M. Á. (2009). The influence of storage time on micronutrients in bottled tomato pulp. Food Chemistry, 112(1), 146-149
  83. https://doi.org/10.1016/j.foodchem.2008.05.051
  84. Poojitha, P., & Athmaselvi, K. A. (2016). Stability and storage studies on banana pulp by ohmic heating and conventional heating. Biosciences Biotechnology Research Asia, 13(2), 1231-1238
  85. https://doi.org/10.13005/bbra/2157
  86. Ranganna, S. (1986). Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill Education., 1112pp.
  87. https://books.google.iq/books/about/Handbook_of_Analysis_and_Quality_Control.html?id=jQN8Kpj0UOMC&redir_esc=y
  88. Rodriguez-Amaya, D. B., & Kimura, M. (2004). Harvest Plus handbook for carotenoid analysis. International Food Policy Research Institute (IFPRI) Washington, D. C. 58pp.
  89. https://www.ifpri.org/publication/harvestplus-handbook-carotenoid-analysis
  90. Shalaby, M. T., Ibrahim, F. Y., El-Shehawy, S. M., & Ibrahim, M. N. (2013). Effect of concentration process and storage period on quality properties of some fruit and vegetable concentrates. Journal of Food and Dairy Sciences, 4(7), 359-372
  91. https://doi.org/10.21608/JFDS.2013.72078
  92. Shatta, A. A. B., Youssef, K. M., Al Sanabani, A. S., & El Samahy, S. K. (2017). Impact of processing steps on physicochemical and rheological properties of tomato paste (Cold-Break). MOJ Food Processing & Technology, 5(2), 263-271
  93. https://doi.org/10.15406/mojfpt.2017.05.00122
  94. Singh, S., Singh, B., Singh, A. K., Singh, K., & Pandey, V. K. (2020). Preparation and effect of different temperature and time on nutritional quality of tomato paste. International Journal of Current Microbiology and Applied Sciences, 9(11), 1144-1151
  95. https://doi.org/10.20546/ijcmas.2020.911.133
  96. Tamuno, E. N. J., & Onyedikachi, E. C. (2015). Effect of packaging materials, storage conditions on the vitamin C and pH value of cashew apple (Anacardium occidentale L.) juice. Journal of Food and Nutrition Sciences, 3(4), 160-165
  97. https://doi.org/10.11648/j.jfns.20150304.14
  98. Trifiro, A., Gherardi, S., Zoni, C., Zanotti, A., Pistocchi, M., Paciello, G., & Antequera, M. M. (1998). Quality changes in tomato concentrate production. Effects of heat treatment. Industrial Conserve, 73(1), 30-41.
  99. https://agris.fao.org/agris-search/search.do?recordID=IT2000060004
  100. Toker, O. S., Dogan, M., Ersöz, N. B., & Yilmaz, M. T. (2013). Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Industrial Crops and Products, 50, 137-144
  101. https://doi.org/10.1016/j.indcrop.2013.05.030
  102. Tudor-Radu, M., Vijan, L. E., Tudor-Radu, C. M., Ion, T. I. Ț. A., Rodica, S. I. M. A., & Mitrea, R. (2016). Assessment of ascorbic acid, polyphenols, flavonoids, anthocyanins and carotenoids content in tomato fruits. Notulae botanicae horti agrobotanici Cluj-Napoca, 44(2), 477-483
  103. https://doi.org/10.15835/nbha44210332
  104. Wilkerson, E. D., Anthon, G. E., Barrett, D. M., Sayajon, G. F. G., Santos, A. M., & Rodriguez-Saona, L. E. (2013). Rapid assessment of quality parameters in processing tomatoes using hand-held and benchtop infrared spectrometers and multivariate analysis. Journal of Agricultural and Food Chemistry, 61(9), 2088-2095.
  105. https://doi.org/10.1021/jf304968f
  106. Wu, X., Yu, L., & Pehrsson, P. R. (2022). Are processed tomato products as nutritious as fresh tomatoes? Scoping review on the effects of industrial processing on nutrients and bioactive compounds in tomatoes. Advances in Nutrition, 13(1), 138-151
  107. https://doi.org/10.1093/advances/nmab109
  108. Xalmuminova, G., & Sulaimonova, G. (2021). Studying the effect of fungicides in field conditions on disease of fruits of tomatoes. Bulletin of Science and Practice, 7(11), 138-141.
  109. https://doi.org/10.33619/2414-2948/72/17
  110. Yıldız, H., & Baysal, T. (2006). Effects of alternative current heating treatment on Aspergillus niger, pectin methylesterase and pectin content in tomato. Journal of Food Engineering, 75(3), 327-332.
  111. https://doi.org/10.1016/j.jfoodeng.2005.04.020
  112. Zhang, Z. H., Wang, L. H., Zeng, X. A., Han, Z., & Brennan, C. S. (2019). Non-thermal technologies and its current and future application in the food industry: A review. International Journal of Food Science & Technology, 54(1), 1-13.
  113. https://doi.org/10.1111/ijfs.13903
  114. Zhao, Y. S., Eweys, A. S., Zhang, J. Y., Zhu, Y., Bai, J., Darwesh, O. M., & Xiao, X. (2021a). Fermentation affects the antioxidant activity of Plant-Based food material through the release and production of bioactive components. Antioxidants, 10(12), 2004.
  115. https://doi.org/10.3390/antiox10122004
  116. Zhao, Y., Wu, C., Zhu, Y., Zhou, C., Xiong, Z., Eweys, A. S., & Xiao, X. (2021b). Metabolomics strategy for revealing the components in fermented barley extracts with Lactobacillus plantarum dy-1. Food Research International, 139, e109808.
  117. https://doi.org/10.1016/j.foodres.2020.109808