Main Article Content

Abstract

This study aimed to explore the genetic diversity and molecular relationships of different genotypes of locally cultivated Bengkulu Ambon bananas. The investigation involved the utilization of chloroplast SSR markers and PCR techniques with 12 primers to examine 29 samples of Ambon bananas. The findings revealed monomorphic (uniform pattern) and polymorphic (varying patterns) DNA bands within the samples. In almost all samples, the monomorphic band pattern was found to be dominant at around 450 base pairs. Meanwhile, in 500 base pairs (primer 4), two different monomorphs were found.Additionally, primers 8 and 11 demonstrated multiple fragment band patterns, indicating the presence of polymorphism among the samples. The results of the dendogram analysis show that the level of similarity of all samples is relatively high. However, there are groups that represent genetic diversity. At a similarity level of 0.82 there are three clusters, four clusters at 0.85, seven clusters at 0.9 and so on. Of the 29 accessions studied, it is known that there are 11 samples that are completely genetically similar. This study provides valuable insights into the genetic diversity and relationships among locally cultivated Bengkulu Ambon bananas. The findings contribute to the existing knowledge regarding the molecular characteristics of these bananas and hold significance for conservation and breeding initiatives.

Keywords

Amplification Genetic diversity Molecular analysis Polymorphic

Article Details

How to Cite
Suryani, R. ., Suliansyah, I. ., Warnita, W. ., Zainal, A. ., & Sukartini, S. . (2024). The Molecular Characterization of Local Bengkulu Ambon Banana Through Chloroplast Simple Sequence Repeats (SSR) Markers. Basrah Journal of Agricultural Sciences, 37(1), 36–46. https://doi.org/10.37077/25200860.2024.37.1.03

References

  1. Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, 27(4), 617–631.
  2. https://doi.org/10.1007/s00299-008-0507-z
  3. Andarini, Y. N., & Nugroho, K. (2023). [The utilization of Simple Sequence Repeat (SSR) markers in genetic diversity analysis of local rice germplasms in Indonesia: A review]. Vegetalika, 12(1), 47. https://doi.org/10.22146/veg.77050
  4. Backiyarani, S., Uma, S., Anuradha, C., & Chandrasekar, A. (2022). Application of “omics” in banana improvement. Pp, 165-191. In Rout, G. R., & Peter, K. V. (Editors). Omics in Horticultural Crops. Elsevier. Academic Press, 640pp.
  5. https://doi.org/10.1016/B978-0-323-89905-5.00006-9
  6. Cmejlova, J., Rejlova, M., Paprstein, F., & Cmejla, R. (2021). A new one-tube reaction kit for the SSR genotyping of apple (Malus × domestica Borkh.). Plant Science: An International Journal of Experimental Plant Biology, 303, 110768.
  7. https://doi.org/10.1016/j.plantsci.2020.110768
  8. Cui, C., Li, Y., Liu, Y., Li, X., Luo, S., Zhang, Z., Wu, R., Liang, G., Sun, J., Peng, J., & Tian, P. (2017). Determination of genetic diversity among Saccharina germplasm using ISSR and RAPD markers. Comptes Rendus Biologies, 340(2), 76–86.
  9. https://doi.org/10.1016/j.crvi.2016.11.005
  10. Dobrogojski, J., Adamiec, M., & Luciński, R. (2020). The chloroplast genome: a review. Acta Physiologiae Plantarum, 42(6), 98.
  11. https://doi.org/10.1007/s11738-020-03089-x
  12. Efendi, Z., & Hidayat, L. (2018). [Physicochemical changes of ambon curup banana (Musa sapientum c.v. Ambon curup) during storage using Ca (OH)2-silica gel as material for delaying rippening].Jurnal Teknologi & Industri Hasil Pertanian, 23(2), 89.
  13. https://doi.org/10.23960/jtihp.v23i2.89-96
  14. Hajba, L., Jeong, S., Chung, D. S., & Guttman, A. (2023). Capillary gel electrophoresis of proteins: historical overview and recent advances. Trends in Analytical Chemistry: TRAC, 162(117024), 117024. https://doi.org/10.1016/j.trac.2023.117024
  15. Hosseini KorehKhosravi, S., Masoumiasl, A., & Dehdari, M. (2018). A comparative analysis of RAPD and ISSR markers for assessing genetic diversity in Iranian populations of Nigella sativa L. Cellular and Molecular Biology (Noisy-Le-Grand, France), 64(1), 52–59.
  16. https://doi.org/10.14715/cmb/2018.64.1.10
  17. Kalapchieva, S., Kosev, V., & Vasileva, V. (2020). Genetic and phenotypic assessment of garden peas (Pisum sativum L.) genotypes. Basrah Journal of Agricultural Sciences, 33(1), 107–121.
  18. https://doi.org/10.37077/25200860.2020.33.1.09
  19. Khalil, M. R., Almahasneh, H. A., & Lawand, S. Y. (2020). Detection of genetic polymorphism in seven barley Hordeum vulgare L. varieties using SSR. Basrah Journal of Agricultural Sciences, 33(2), 115–124.
  20. https://doi.org/10.37077/25200860.2020.33.2.10
  21. Pei, D., Song, S., Kang, J., Zhang, C., Wang, J., Dong, T., Ge, M., Pervaiz, T., Zhang, P., & Fang, J. (2023). Characterization of simple sequence repeat (SSR) markers mined in whole grape genomes. Genes, 14(3), 663.
  22. https://doi.org/10.3390/genes14030663
  23. Rahayuniati, R. F., Hartono, S., Somowiyarjo, S., Subandiyah, S., & Thomas, J. E. (2021). Characterization of banana bunchy top virus on Sumatra (Indonesia) wild banana. Biodiversitas Journal of Biological Diversity, 22(3), 1243-1249. https://doi.org/10.13057/biodiv/d220321
  24. Reichert Júnior, F. W., Ogliari, J. B., Maghelly, O. R., & Souza, R. de. (2021). Relationship between phenological and morphological characteristics of plant with popcorn races of a diversity microcenter in southern Brazil. Research, Society and Development, 10(7), e46710716734.
  25. https://doi.org/10.33448/rsd-v10i7.16734
  26. Ross, J., Ostlund, E. N., Cao, D., Tatsumi, M., & Hoshino, Y. (2008). Acrylamide concentration affects the relative position of VP7 gene of serotype G2 strains as determined by polyacrylamide gel electrophoresis. Journal of Clinical Virology, 42(4), 374–380.
  27. https://doi.org/10.1016/j.jcv.2008.03.019
  28. Salgotra, R. K., & Chauhan, B. S. (2023). Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1), 174.
  29. https://doi.org/10.3390/genes14010174
  30. Siew, G. Y., Ng, W. L., Tan, S. W., Alitheen, N. B., Tan, S. G., & Yeap, S. K. (2018). Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers. Peer Journal, 6(e4266), e4266.
  31. https://doi.org/10.7717/peerj.4266
  32. Sulistyawati, P., & Widyatmoko, A. (2017). Genetic diversity in kayu merah (Pterocarpus indicus Willd) populations using random amplified polymorphism dna marker. Jurnal Pemuliaan Tanaman Hutan, 11(1), 67–76.
  33. https://doi.org/10.20886/jpth.2017.11.1.67-76
  34. Takamatsu, T., Baslam, M., Inomata, T., Oikawa, K., Itoh, K., Ohnishi, T., Kinoshita, T., & Mitsui, T. (2018). Optimized method of extracting rice chloroplast DNA for high-quality plastome resequencing and de Novo assembly. Frontiers in Plant Science, 9. 266
  35. https://doi.org/10.3389/fpls.2018.00266
  36. Zhao, L., Liu, H., Cai, G., & Xia, M. (2014). Assessment of the genetic diversity and genetic relationships of Lilium in China using ISSR markers. Biochemical Systematics and Ecology, 55, 184–189.
  37. https://doi.org/10.1016/j.bse.2014.03.024

Similar Articles

You may also start an advanced similarity search for this article.