Main Article Content

Abstract

This study focuses on designing a conservation indigenous Awassi sheep breeding program based on the analysis of genetic variation using the simple sequence repeat markers (SSR). The allele frequency distribution of six SSR markers distributed on three different chromosomes was used to determine the genetic variation among 50 Awassi sheep (15 from the north, 20 from the middle, and 15 from the south of Babylon city) that were collected from the private herds. The results showed that the RM32 marker exhibited high frequency and the most genotypes existed compared to other markers. The mean number of alleles (NA), the effective number of alleles (NE), the Shannon index (I), and the polymorphism information content (PIC) values per loci were 2.66 ± 0.81, 2.05 ± 0.87, 0.73 ± 0.42, and 0.37± 0.26 respectively. Also, the average observed (Obs_Hom), expected (Exp_Hom) homozygosity, observed (Obs_Het), expected (Exp_Het) heterozygosity, Nei’s expected heterozygosity, and inbreeding coefficient (FIS) were 0.77± 0.18, 0.56 ±0.25, 0.23 ± 0.18, 0.44 ±0.25, 0.43± 0.24, and 0.41± 0.12, respectively. The results of the Bayesian analysis revealed that all populations were homogenous there was a clear overlap between the individuals of the three distinct clusters were formed. On this basis, we conclude that the indigenous Awassi sheep in Babylon city have reasonable genetic variation.

Keywords

Genetic variation Indigenous Awassi sheep Number of alleles Shannon index SSR marker

Article Details

How to Cite
Alnajm, H. R. ., & Javanmard, A. . (2024). Some Genetic Variation Parameters of Iraqi Sheep Population Using SSR Markers in Babylon City. Basrah Journal of Agricultural Sciences, 37(1), 71–85. https://doi.org/10.37077/25200860.2024.37.1.06

References

  1. Agaviezor, B. O., Peters, S. O., Adefenwa, M. A., Yakubu, A., Adebambo, O. A., Ozoje, M. O., ... & Imumorin, I. G. (2012). Morphological and microsatellite DNA diversity of Nigerian indigenous sheep. Journal of animal science and biotechnology, 3, 1-16.‏
  2. https://doi.org/10.1186/2049-1891-3-38
  3. Ahmed, J., Tariq, M. M., Rashid, N., Faraz, A., Rafeeq, M., Sheikh, I. S., Jahan, M., Fatih, A., Bajwa, M., A., Jameel, I., Ali, M., & Iftikhar, S. (2022). Genetic diversity in bibrik sheep of Pakistan elucidated through molecular characterization. ‏Pakistan Journal of Zoology, 55(2), 1161-1166.
  4. https://doi.org/10.17582/journal.pjz/20210607170624
  5. Ajmone-Marsan, P., Boettcher, P. J., Ginja, C., Kantanen, J., & Lenstra, J. A. (2023). Genomic characterization of animal genetic resources. FAO, Rome, Italy.
  6. https://doi.org/10.4060/cc3079e
  7. Aljubouri, T. R. S., & Al-Shuhaib, M. B. S. (2023). A missense SNP in the proopiomelanocortin (POMC) gene is associated with growth traits in Awassi and Karakul sheep. Animal biotechnology, 1–14.
  8. https://doi.org/10.1080/10495398.2023.2197469
  9. Alkass, J. E., & Juma, K. H. (2005). Small Ruminants Breeds of Iraq. Pp. 63-101. In: Iniquez, L. (Editor). Characterization of Small Ruminant in West Asia and North Africa. Vol. I. West Asia International Center for Agricultural Research. In the Dry Area (ICARDA); Alepo, Syria. https://cgspace.cgiar.org/handle/10568/66696
  10. Alkass, J. E., Hermiz, H. N., & Baper, M. I. (2021). Some aspects of reproductive efficiency in awassi ewes: A review. Iraqi Journal of Agricultural Sciences, 52(1), 20-2.
  11. https://doi.org/10.36103/ijas.v52i1.1232
  12. Alnajm, H., Alijani, S., Javanmard, A., Rafat, S. A., & Hasanpur, K. (2021). Genetic diversity analysis of four sheep breeds of Iran: Towards genetic maintenance and conservation decision. Iranian Journal of Applied Animal Science, 11(3), 527-538.
  13. https://journals.iau.ir/article_684654.html
  14. Alwan, I. H., Aljubouri, T. R. S., & Al-Shuhaib, M. B. S. (2023). A novel missense snp in the fatty acid-binding protein 4 (FABP4) gene is associated with growth traits in karakul and awassi sheep. Biochemical genetics, 10. 1007.
  15. https://doi.org/10.1007/s10528-023-10504-8
  16. Asmare, S., Alemayehu, K., Mwacharo, J., Haile, A., Abegaz, S., & Ahbara, A. (2023). Genetic diversity and within-breed variation in three indigenous Ethiopian sheep based on whole-genome analysis. Heliyon, 9(4), e14863.
  17. https://doi.org/10.1016/j.heliyon.2023.e14863
  18. Ben Sassi-Zaidy, Y., Mohamed-Brahmi, A., Nouairia, G., Charfi-Cheikhrouha, F., Djemali, M. N., & Cassandro, M. (2022). Genetic variability and population structure of the Tunisian sicilo-sarde dairy sheep breed inferred from microsatellites analysis. Genes, 13(2), 304.
  19. https://doi.org/10.3390/genes13020304
  20. Earl, D. A., & VonHoldt, B. M. (2012). Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361.
  21. https://doi.org/10.1007/s12686-011-9548-7
  22. Ebrahimi, M. T., Mohammad Abadi, M. R., & Esmaeili Zade, A. (2016). Analysis of genetic diversity in five Iranian sheep population using microsatellites markers. Agricultural Biotechnology Journal, 7(4), 143-158.
  23. https://doi.org/10.5194/aab-60-183-2017
  24. El Nahas, S. M., Hassan, A. A., Mossallam, A. A. A., Mahfouz, E. R., Bibars, M. A., Oraby, A. S., & De Hondt, H. A. (2008). Analysis of genetic variation in different sheep breeds using microsatellites. African Journal of Biotechnology, 7(8).
  25. https://www.ajol.info/index.php/ajb/article/view/58620
  26. Elfawal, M. A., Galal, S., Abdelsalam, A. Z. E., Osman, M. A., & Hassanane, M. S. (2008). Microsatellite polymorphism in three Egyptian sheep breeds. Egyptian Journal of Animal Production, 45(1), 1-14.
  27. Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources, 10(3), 564-567.
  28. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  29. Fadhil, I. A., & Al-Shuhaib, M. B. S. (2022). Phylogenetic differentiation between Awassi and Hamdani sheep using the mitochondrial 12S rRNA. Animal biotechnology, 33(5), 801–809.
  30. https://doi.org/10.1080/10495398.2020.1837146
  31. FAO, R. (2011). Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines no 9.100 p. FAO, Rome, Italy. ISBN: 9789251070321
  32. Faraj, S. H., Ayied, A. Y., & Al-Rishdy, K. A. (2020). Single nucleotide polymorphisms in the promoter of CYP19 gene in cattle bred in Iraq. Basrah Journal of Agricultural Sciences, 33(1), 89-97
  33. https://doi.org/10.37077/25200860.2020.33.1.07
  34. Gizaw, S., Komen, H., Hanote, O., Arendonk, J. A. M., Kemp, S., Haile, A., Okeyo, A. M., & Dessie, T. (2011). Characterization and conservation of indigenous sheep genetic resources: A practical framework for developing countries, Vol. 27. ILRI (aka ILCA and ILRAD).
  35. https://hdl.handle.net/10568/5371
  36. Hadi, Y. A., Mnati, A. A., & Abdulfattah, S. Y. (2020). Study of genetic diversity using microsatellite markers in Iraqi sheep breeds. The Iraqi Journal of Agricultural Science, 51(5), 1367-1374.
  37. https://doi.org/10.36103/ijas.v51i5.1146
  38. Harkat, S., Laoun, A., Belabdi, I., Benali, R., Outayeb, D., Payet-Duprat, N., Blanquet, V., Lafri, M., & Da Silva, A. (2017). Assessing patterns of genetic admixture between sheep breeds: Case study in Algeria. Ecology and evolution, 7(16), 6404–6412.
  39. https://doi.org/10.1002/ece3.3069
  40. Hoban, S., Archer, F. I., Bertola, L. D., Bragg, J. G., Breed, M. F., Bruford, M. W., Coleman, M. A., Ekblom, R., Funk, W. C., Grueber, C. E., Hand, B. K., Jaffé, R., Jensen, E., Johnson, J. S., Kershaw, F., Liggins, L., MacDonald, A. J., Mergeay, J., Miller, J. M., Muller-Karger, F., O'Brien, D., Paz-Vinas, I., Potter, K. M., Razgour, O., Vernesi, C., & Hunter, M. E. (2022). Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biological reviews of the Cambridge Philosophical Society, 97(4), 1511–1538.
  41. https://doi.org/10.1111/brv.12852
  42. Hristova, D., Metodiev, S., Nikolov, V., Vassilev, D., & Todorovska, E. (2017). Genetic variation of Bulgarian autochthonous sheep breeds using microsatellite markers. Genetika, 49(1), 247-258.
  43. https://doi.org/10.2298/GENSR1701247H
  44. Ibrahim, M., Ahmad, S., Swati, Z. A., & Khan, M. S. (2010). Genetic diversity in Balkhi, Hashtnagri and Michni sheep populations using SSR markers. African Journal of Biotechnology, 9(45), 7617-7628.
  45. https://www.ajol.info/index.php/ajb/article/view/130405
  46. Iniguez, L. (2005). Characterization of small ruminant breeds in West Asia and North Africa. Vol. 1. Aleppo: ICARDA.‏
  47. Jawasreh, K. I., Ababneh, M. M., Ismail, Z. B., Younes, A. M. E. B., & Al Sukhni, I. (2018). Genetic diversity and population structure of local and exotic sheep breeds in Jordan using microsatellites markers. Veterinary world, 11(6), 778.
  48. https://doi.org/10.14202/vetworld.2018.778-781
  49. Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314(6006), 67-73.
  50. https://doi.org/10.1038/314067a0
  51. Jehan, M., Bajwa, M. A., Tariq, M. M., Faraz, A., Samaad, A., Ahmad, J., & Barozai, Y. H. (2022). Molecular characterization of balochi sheep by using microsatellite markers in Pakistan. Pakistan Journal of Zoology, 54(5), 2295.‏
  52. https://doi.org/10.17582/journal.pjz/20210310070338
  53. Karsli, B. A., Demir, E., Fidan, H. G., & Karsli, T. (2020). Assessment of genetic diversity and differentiation among four indigenous Turkish sheep breeds using microsatellites. Archives Animal Breeding, 63(1), 165-172.
  54. https://doi.org/10.5194/aab-63-165-2020
  55. Kirikci, K., Cam, M. A., & Mercan, L. (2020). Genetic diversity and relationship among indigenous Turkish Karayaka sheep subpopulations. Archives Animal Breeding, 63(2), 269-275.
  56. https://doi.org/10.5194/aab-63-269-2020
  57. Kristensen, T. N., Hoffmann, A. A., Pertoldi, C., & Stronen, A. V. (2015). What can livestock breeders learn from conservation genetics and vice versa. Frontiers in genetics, 6, 38.
  58. https://doi.org/10.3389/fgene.2015.00038
  59. Kusza, S., Nagy, I., Sasvári, Z., Stágel, A., Németh, T., Molnár, A., Kume, K., Bosez, Z., Javor, A., & Kukovics, S. (2008). Genetic diversity and population structure of Tsigai and Zackel type of sheep breeds in the Central-Eastern-and Southern-European regions. Small Ruminant Research, 78(1-3), 13-23.
  60. https://doi.org/10.1016/j.smallrumres.2008.04.002
  61. Li, X., He, S. G., Li, W. R., Luo, L. Y., Yan, Z., Mo, D. X.,Wan, X., Feng-Hua, L., Yang, J., Xu, Y., Deng, J., Zhu, Q., Xie, X., Xu, S., Chen-Xi, L. C., Peng, X., Han, B., Li, Z., Chen, L., Han, J., Ding, X., Dingkao, R., Chu, Y., Wu, J., Wang, L., Ping, Z. P., Ming-Jun, L. M., & Li, M. H. (2022). Genomic analyses of wild argali, domestic sheep, and their hybrids provide insights into chromosome evolution, phenotypic variation, and germplasm innovation. Genome Research, 32(9), 1669-1684. https://doi.org/10.1101/gr.276769.122
  62. Mahmoud, A. H., Abou-Tarboush, F. M., Rady, A., Al-Anazi, K. M., Farah, M. A., & Mohammed, O. B. (2020). Genetic variability of sheep populations of Saudi Arabia using microsatellite markers. Indian Journal of Animal Research, 54(4), 409-412.
  63. http://doi.org/10.18805/ijar.B-775
  64. Markovic, M., Radonjić, D., Zorc, M., Đokić, M., & Marković, B. (2022). Genetic diversity of montenegrin local sheep breeds based on microsatellite markers. Animals, 12(21), 3029.
  65. https://doi.org/10.3390/ani12213029
  66. Mihailova, Y., Rusanov, K., Rusanova, M., Vassileva, P., Atanassov, I., Nikolov, V., & Todorovska, E. G. (2023). Genetic diversity and population structure of Bulgarian autochthonous sheep breeds revealed by microsatellite analysis. Animals, 13(11), 1878: https://doi.org/10.3390/ani13111878
  67. Mukhongo, D. M., Mwai, O., Tapio, M., & Muigai, A. (2014). Genetic diversity and population structure of the indigenous sheep in Kenya based on microsatellite analysis: implications for their conservation. Journal of Livestock Science, 5, 65-78. https://hdl.handle.net/10568/69522
  68. Musthafa, M. M., Aljummah, R. S., & Alshaik, M. A. (2012). Genetic diversity of Najdi sheep based on microsatellite analysis. African Journal of Biotechnology, 11(83), 14868-14876.‏ https://www.ajol.info/index.php/ajb/article/view/129468
  69. Naskar, S., Gowane, G. R., Chopra, A., Paswan, C., & Prince, L. L. L. (2012). Genetic adaptability of livestock to environmental stresses. Pp, 317-378. In Sejian, V., Naqvi, S. M. K., Ezeji, T., Lakritz, J., & Lal, R. (Editors). Environmental stress and amelioration in livestock production. Springer Berlin, Heidelberg, 570pp.
  70. https://doi.org/10.1007/978-3-642-29205-7_13
  71. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70(12), 3321–3323.
  72. https://doi.org/10.1073/pnas.70.12.3321
  73. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583-590.
  74. https://doi.org/10.1093/genetics/89.3.583
  75. Nigussie, H., Mwacharo, J. M., Osama, S., Agaba, M., Mekasha, Y., Kebede, K., Abegaz, S., & Pal, S. K. (2019). Genetic diversity and matrilineal genetic origin of fat-rumped sheep in Ethiopia. Tropical animal health and production, 51(6), 1393–1404.
  76. https://doi.org/10.1007/s11250-019-01827-z
  77. Ocampo, R., Cardona, H., & Martínez, R. (2016). Genetic diversity of Colombian sheep by microsatellite markers. Chilean journal of agricultural research, 76(1), 40-47.
  78. http://doi.org/10.4067/S0718-58392016000100006
  79. Odjakova, T., Todorov, P., Radoslavov, G., & Hristov, P. (2022). Microsatellite genotyping of two Bulgarian sheep breeds. Diversity, 14(3), 210.
  80. https://doi.org/10.3390/d14030210
  81. Odjakova, T., Todorov, P., Kalaydzhiev, G., Salkova, D., Dundarova, H., Radoslavov, G., & Hristov, P. (2023). A study on the genetic diversity and subpopulation structure of three Bulgarian mountainous sheep breeds, based on genotyping of microsatellite markers. Small Ruminant Research, 226, 107034.
  82. https://doi.org/10.1016/j.smallrumres.2023.107034
  83. Oner, Y., Üstüner, H., Orman, A., Yilmaz, O., & Yılmaz, A. (2014). Genetic diversity of Kıvırcık sheep breed reared in different regions and its relationship with other sheep breeds in Turkey. Italian Journal of Animal Science, 13(3), 3382.
  84. https://doi.org/10.4081/ijas.2014.3382
  85. Owaid, J. M. (2015). Study of genetic similarity among Iraqi sheep breeds using microsatellites and PCR techniques. M. Sc. Thesis. College of Agriculture, University of Basrah. 118pp. (In Arabic).
  86. Pichler, R., Hussain, T., Xu, W., Aftab, A., Babar, M. E., Thiruvenkadan, A. K., Ramasamy, S., Teneva, A., Sebastino, K., Sanou, M., Traore, A., Diallo, A., & Periasamy, K. (2017). Short tandem repeat (STR) based genetic diversity and relationship of domestic sheep breeds with primitive wild Punjab Urial sheep (Ovis vignei punjabiensis). Small Ruminant Research, 148, 11-21.‏
  87. https://doi.org/10.1016/j.smallrumres.2016.12.024
  88. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945-959.
  89. https://doi.org/10.1093/genetics/155.2.945
  90. Schönherz, A. A., Szekeres, B. D., Nielsen, V. H., & Guldbrandtsen, B. (2020). Population structure and genetic characterization of two native Danish sheep breeds. Acta Agriculturae Scandinavica, Section A—Animal Science, 69(1-2), 53-67.
  91. https://www.tandfonline.com/doi/abs/10.1080/09064702.2019.1639804
  92. Sharma, R., Ahlawat, S., Sharma, H., Sharma, P., Panchal, P., Arora, R., & Tantia, M. S. (2020). Microsatellite and mitochondrial DNA analyses unveil the genetic structure of native sheep breeds from three major agro-ecological regions of India. Scientific reports, 10(1), 20422.
  93. https://doi.org/10.1038/s41598-020-77480-6
  94. Taberlet, P., Coissac, E., Pansu, J., & Pompanon, F. (2011). Conservation genetics of cattle, sheep, and goats. Comptes rendus biologies, 334(3), 247-254. https://doi.org/10.1016/j.crvi.2010.12.007
  95. Tapio, M., Tapio, I., Grislis, Z., Holm, L. E., Jeppsson, S., Kantanen, J., Miceikiene, I., Olsaker, I., Viinalass, H., & Eythorsdottir, E. (2005). Native breeds demonstrate high contributions to the molecular variation in northern European sheep. Molecular Ecology, 14(13), 3951-3963.
  96. https://doi.org/10.1111/j.1365-294X.2005.02727.x
  97. Xia, Q., Wang, X., Pan, Z., Zhang, R., Wei, C., Chu, M., & Di, R. (2021). Genetic diversity and phylogenetic relationship of nine sheep populations based on microsatellite markers. Archives Animal Breeding, 64(1), 7-16.‏
  98. https://doi.org/10.5194/aab-64-7-2021
  99. Yeh, F. C., Yang, R. C., Boyle, T. B., Ye, Z. H., & Mao, J. X. (1997). POPGENE, the user-friendly shareware for population genetic analysis, Molecular biology and biotechnology centre, University of Alberta.
  100. https://scirp.org/reference/referencespapers?referenceid=1669232
  101. Yilmaz, O., Sezenler, T., Sevim, S., Cemal, I., Karaca, O., Yaman, Y., & Karadag, O. (2015). Genetic relationships among four Turkish sheep breeds using microsatellites. Turkish Journal of Veterinary & Animal Sciences, 39(5), 576-582.
  102. https://doi.org/10.3906/vet-1411-46
  103. Zeng, X. C., Chen, H. Y., Hui, W. Q., Jia, B., Du, Y. C., & Tian, Y. Z. (2010). Genetic diversity measures of 8 local sheep breeds in northwest of China for genetic resource conservation. Asian-Australasian Journal of Animal Sciences, 23(12), 1552-1556.
  104. https://doi.org/10.5713/ajas.2010.10132