Main Article Content

Abstract

In the current study, we evaluated genetic variation and bottleneck analyses of Iraqi native cows in three locations of Babylon province. A total of 70 individuals of three cows' population were genotyped using ten the short tandem repeat markers (STR). The STR loci showed high variation of polymorphism. The average total number of alleles (TNA) and effective number of alleles (Ae) values were 5.30± 0.17 and 3.89± 0.11, respectively. The TNA at the marker level ranged from 3.00 (ETH3) to 8.00 (TGLA227), while the Ae ranged from 2.69 (ETH3) to 5.54 (TGLA227). The Shannon index (I) at the marker level ranged from 1.05 (ETH3) to 1.87 (TGLA227), with mean 1.48± 0.28. Also, the mean polymorphism information content (PIC) was 0.65±0.15, with a range of 0.54 (ETH3) to 0.81 (TGLA227). The average observed heterozygosity (Obs_Het) was 0.54 ± 0.18 and varied from 0.16 (ETH3) to 0.77 (TGLA53). The average expected heterozygosity (Exp_Het) was 0.75±0.25, with a range of 0.62 (ETH3) to 0.85 (TGLA227). The means HS unbiased gene diversity, and inbreeding coefficient (FIS) were 0.73±0.23, and 0.24±0.09, respectively. The mean Fis, Fit and Fst, and gene flow (Nm) were 0.296 ± 0.065, 0.314 ± 0.090, 0.032 ± 0.002, and 7.259 ± 2.113 respectively.  The native cow's population is not at bottleneck, and normal L-shaped distribution of allele frequencies, that it has not experienced any recent decline in effective population size and has remained in equilibrium between mutation and drift. The Bayesian analysis showed that all animals were heterogeneous and formed three distinct clusters.

Keywords

Bottleneck Genetic variation Iraqi cows STR loci

Article Details

How to Cite
Alnajm , H. R. ., Alrubaye, T. A. ., & Javanmard , A. . (2024). Genetic Variation and Bottleneck Tests in Iraqi Native Cows of Babylon Province by STR Markers. Basrah Journal of Agricultural Sciences, 37(2), 177–193. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1994

References

  1. Abdelmanova, A. S., Kharzinova, V. R., Volkova, V. V., Mishina, A. I., Dotsev, A. V., Sermyagin, A. A., Boronetskaya, O. I., Petrikeeva, L. V., Chinarov, R. Y., Brem, G., & Zinovieva, N. A. (2020). Genetic Diversity of Historical and Modern Populations of Russian Cattle Breeds Revealed by Microsatellite Analysis. Genes, 11(8), 940. https://doi.org/10.3390/genes11080940
  2. Al-Jub, S .M & Riyadh Hamad senkal. (2023). Genetic diversity of Iraqi local cow and their comparision with imported cows using microsatellite markers. Iraqi Journal of Agricultural Sciences, 54(6), 1529–1537. https://doi.org/10.36103/ijas.v54i6.1852
  3. Al-Murrani, W., Majid, S., & Alkas, J. (2003). Animal genetic resources in Iraq. Country scientific report.‏ Baghdad: Iraq Agricultural Ministry Publication, 1–55.
  4. Alnajm, H. R., & Javanmard, A. (2024). Some Genetic Variation Parameters of Iraqi Sheep Population Using SSR Markers in Babylon City. Basrah Journal of Agricultural Sciences, 37(1), 71-85.‏ https://doi.org/10.37077/25200860.2024.37.1.06
  5. Alshawi, A., Essa, A., Al-Bayatti, S., & Hanotte, O. (2019). Genome analysis reveals genetic admixture and signature of selection for productivity and environmental traits in Iraqi cattle. Frontiers in genetics, 10, 609.‏ https://doi.org/10.3389/fgene.2019.00609
  6. Amigues, Y., Boitard, S., Bertrand, C., SanCristobal, M., & Rocha, D. (2011). Genetic characterization of the Blonde d’Aquitaine cattle breed using microsatellite markers and relationship with three other French cattle populations. Journal of Animal Breeding and Genetics, 128(3), 201-208.‏ https://doi.org/10.1111/j.1439-0388.2010.00890.x
  7. Banda, L. J., & Tanganyika, J. (2021). Livestock provide more than food in smallholder production systems of developing countries. Animal Frontiers, 11(2), 7-14.‏ https://doi.org/10.1093/af/vfab001
  8. Bigirwa, G., Kim, D., Acai, O., Na, C., Oh, J., & Song, K. (2019). Genetic diversity and differentiation among Korean-Holstein, Hanwoo, and Uganda-Holstein breeds. South African Journal of Animal Science, 49(6), 1021-1027.‏ https://doi.org/10.4314/sajas.v49i6.6
  9. Boettcher, P. J., Hoffmann, I., Baumung, R., Drucker, A. G., McManus, C., Berg, P.,& Thompson, M. C. (2015). Genetic resources and genomics for adaptation of livestock to climate change. Frontiers in genetics, 5, 461.‏https://doi.org/10.3389/fgene.2014.00461
  10. Bora, S. K., Tessema, T. S., Girmay, G., & Jin, X. (2023). Genetic diversity and population structure of selected Ethiopian indigenous cattle breeds using microsatellite markers. Genetics Research, 2023, e28.‏ https://doi.org/10.1155/2023/1106755
  11. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32(3), 314.
  12. Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001-2014.‏ https://doi.org/10.1093/genetics/144.4.2001
  13. Delgado, J.V., Martínez A.M., Acostam A., Alvarez, L.A., Armstrong, E., Camacho, E., Cañón, J., Cortés, O., Dunner, S., Landi, V., Marques, J.R., Martín-Burriel, I., Martínez, O.R., Martínez, R.D., Melucci, L., Muñoz, J.E., Penedo, M.C., Postiglioni, A., Quiróz, J., Rodellar, C., Sponenberg, P., Uffo, O., Ulloa-Arvizu, R., Vega-Pla, J.L., Villalobos, A., Zambrano, D., Zaragoza, P., Gama, L.T., & Ginja, C. (2012). Genetic characterization of Latin‐American Creole cattle using microsatellite markers. Animal Genetics, 43(1), 2-10.‏ https://doi.org/10.1111/j.1365-2052.2011.02207.x
  14. Demir, E., & Balcioglu, M. S. (2019). Genetic diversity and population structure of four cattle breeds raised in Turkey using microsatellite markers. Czech Journal of Animal Science, 64(10).‏ https://doi.org/10.17221/62/2019-CJAS
  15. Duan, B., Kang, T., Wan, H., Liu, W., Zhang, F., Mu, S., ... & Kang, X. (2023). Microsatellite markers reveal genetic diversity and population structure of Portunus trituberculatus in the Bohai Sea, China. Scientific Reports, 13(1), 8668.‏ https://doi.org/10.1038/s41598-023-35902-1
  16. Earl, D.A., & VonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources, (4), 359-361.‏ https://doi.org/10.1007/s12686-011-9548-7
  17. Elavarasan, K., Kumar, S., Agarwal, S., Vani, A., Sharma, R., Kumar, S., ... & Gaur, G. K. (2023). Estimation of microsatellite-based autozygosity and its correlation with pedigree inbreeding coefficient in crossbred cattle. Animal Biotechnology, 34(8), 3564-3577.‏ https://doi.org/10.1080/10495398.2023.2176318
  18. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x,
  19. Fan, H., & Chu, J. Y. (2007). A brief review of short tandem repeat mutation. Genomics, proteomics & bioinformatics, 5(1), 7–14. https://doi.org/10.1016/S1672-0229(07)60009-6
  20. FAO, R. (2011). Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines no 9.100 p. FAO, Rome, Italy. ISBN: 9789251070321
  21. Faraj, S. H., Putra, W. P., & Tyasi, T. L. (2023). Detection of SNPs in FABP4 Gene and Its Relationship with Milk Quality Traits in Iraqi Jenoubi Cows. Basrah Journal of Agricultural Sciences, 36(1), 131-139. https://doi.org/10.37077/25200860.2023.36.1.11
  22. Frankham, R., Briscoe, D. A., & Ballou, J. D. (2002). Introduction to conservation genetics. Cambridge university press.‏ 617 pp. https://doi.org/10.1017/CBO9780511808999
  23. Gamarra, D., Taniguchi, M., Aldai, N., Arakawa, A., Lopez-Oceja, A., & de Pancorbo, M. M. (2020). Genetic characterization of the local pirenaica cattle for parentage and traceability purposes. Animals, 10(9), 1584.‏ https://doi.org/10.3390/ani10091584
  24. Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x
  25. Gororo, E., Makuza, S. M., Chatiza, F. P., Chidzwondo, F., & Sanyika, T. W. (2018). Genetic diversity in Zimbabwean Sanga cattle breeds using microsatellite markers. South African Journal of Animal Science, 48(1), 128-141.‏ https://doi.org/10.4314/sajas.v48i1.15
  26. Grema, M., Traoré, A., Issa, M., Hamani, M., Abdou, M., Soudré, A., Sanou, M., Pichler, R., Tamboura, H. H., Alhassane, Y., & Periasamy, K. (2017). Short tandem repeat (STR) based genetic diversity and relationship of indigenous Niger cattle. Archives Animal Breeding, 60(4), 399-408. https://doi.org/10.5194/aab-60-399-2017
  27. Hadi, R. G., & Alnajm, H. R. (2024). Genetic diversity analysis of cattle genetic populations in some cities of the Middle Al-Furat in Iraq using microsatellite data. In IOP Conference Series: Earth and Environmental Science (Vol. 1371, No. 7, p. 072018). IOP Publishing.‏ https://doi.org/10.1088/1755-1315/1371/7/072018
  28. Hayes, B. J. (2011). Efficient parentage assignment and pedigree reconstruction with dense single nucleotide polymorphism data. Journal of dairy science, 94(4), 2114-2117.‏ https://doi.org/10.3168/jds.2010-3896
  29. Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S., & Rufino, M. C. (2013). The roles of livestock in developing countries. animal, 7(s1), 3-18.‏ https://doi.org/10.1017/S1751731112001954
  30. Ladyka, V. І., Khmelnychyi, L. M., Lyashenko, Y. V., & Kulibaba, R. O. (2019). Analysis of the genetic structure of a population of Lebedyn cattle by microsatellite markers. Regulatory Mechanisms in Biosystems, 10(1), 45-49.‏ https://doi.org/10.15421/021907
  31. Madilindi, M. A., Banga, C. B., Bhebhe, E., Sanarana, Y. P., Nxumalo, K. S., Taela, M. G., & Mapholi, N. O. (2019). Genetic differentiation and population structure of four Mozambican indigenous cattle populations. Livestock Research for Rural Development, 31, 47.‏ http://www.lrrd.org/lrrd31/4/matom31047.html
  32. Manomohan, V., Ramasamy, S., Pichler, R., Nagarajan, M., Karuppusamy, S., Krovvidi, S., Nachiappan, R. K., Peters, S. O., & Periasamy, K. (2022). Assessment of Mutation Drift Equilibrium and the Occurrence of a Recent Genetic Bottleneck in South Indian Zebu Cattle. Animals, 12(14), 1838. https://doi.org/10.3390/ani12141838
  33. Mukherjee, S., Mukherjee, A., Kumar, S., Verma, H., Bhardwaj, S., Togla, O., ... & Rajkhowa, C. (2022). Genetic characterization of endangered indian Mithun (Bos frontalis), indian Bison/Wild Gaur (Bos gaurus) and Tho-tho cattle (Bos indicus) populations using SSR markers reveals their diversity and unique phylogenetic status. Diversity, 14(7), 548.‏ https://doi.org/10.3390/d14070548
  34. Ndiaye, N. P., Sow, A., Dayo, G. K., Ndiaye, S., Sawadogo, G. J., & Sembène, M. (2015). Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers. Veterinary world, 8(8), 994–1005. https://doi.org/10.14202/vetworld.2015.994-1005
  35. Nwachukwu, E. N., Kalla, D.U., Ukwu, H. O., Ogbu, C. C., Ezea, J., Udoh, U. H., & Ekumankama, O.O. (2022). Genetic diversity and population structure of four Nigerian indigenous cattle breeds. Tropical Animal Health and Production, 54(2), 132.https://doi.org/10.1007/s11250-022-03132-8
  36. Ozsensoy, Y, Kurar E, Dogan M, Bulut Z, Nizamioglu M, Altunok V, Isik A, Camlidag A. (2019). Phylogenetic relationships of native Turkish cattle breeds using microsatellite markers. Turkish Journal of Veterinary & Animal Sciences, 43(1), 23-29.‏ https://doi.org/10.3906/vet-1805-10
  37. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics (Oxford, England), 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
  38. Peixoto, M. G. C. D., Carvalho, M. R. S., Egito, A. A., Steinberg, R. S., Bruneli, F. Â. T., Machado, M. A., Santos, F. C., Rosse, I. C., & Fonseca, P. A. S. (2021). Genetic Diversity and Population Genetic Structure of a Guzerá (Bos indicus) Meta-Population. Animals, 11(4), 1125. https://doi.org/10.3390/ani11041125
  39. Pham, L. D., Do, D. N., Binh, N. T., Van Ba, N., Thuy, T. T. T., Hoan, T. X., ... & Kadarmideen, H. N. (2013). Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites. Livestock Science, 155(1), 17-22.‏ http://doi.org/10.1016/j.livsci.2013.04.006
  40. Piry, S., Luikart, G., & Cornuet, J. M. (1999). BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data.‏ Journal of Heredity, 90 (4), 502–503. https://doi.org/10.1093/jhered/90.4.502
  41. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945
  42. Putman, A. I., & Carbone, I. (2014). Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecology and evolution, 4(22), 4399–4428. https://doi.org/10.1002/ece3.1305
  43. Radhika, G., Aravindakshan, T. V., Anilkumar, K., Manoj, M., & Thomas, S. (2023). Genetic diversity analysis of cattle genetic groups of Kerala state using microsatellite data. Animal Biotechnology, 34(4), 1154-1162.‏ https://doi.org/10.1080/10495398.2021.2014857
  44. Rahal, O., Aissaoui, C., Ata, N., Yilmaz, O., Cemal, I., Ameur Ameur, A., & Gaouar, S. B. S. (2021). Genetic characterization of four Algerian cattle breeds using microsatellite markers. Animal biotechnology, 32(6), 699–707. https://doi.org/10.1080/10495398.2020.1746321
  45. Ramesha, K. P., Divya, P., Rao, A. K. H. I. L. A., Basavaraju, M., Jeyakumar, S., Das, D. N., & Kataktalware, M. A. (2016). Assessment of genetic diversity among Malnad Gidda, Punganur and Vechur‐dwarf cattle breeds of India using microsatellite arkers. Indian Journal of Animal Sciences, 86(2), 186-191.‏ https://doi.org/10.56093/ijans.v86i2.55805
  46. Sharma, H., Sharma, R., Ahlawat, S., Raja, K. N., Jain, A., & Tantia, M. S. (2020). Genetic diversity status of only registered cattle breed of Chhattisgarh-Kosali. Indian Journal of Animal Sciences, 90(6), 873-878.
  47. Sharma, R., Ahlawat, S., Pundir, R. K., Arora, R., & Tantia, M. S. (2023). Genetic diversity and differentiation of Thutho cattle from northeast India using microsatellite markers. Animal Biotechnology, 34(9), 5016-5027.‏ https://doi.org/10.1080/10495398.2023.2221704
  48. Sharma, R., Maitra, A., Singh, P. K., & Tantia, M. S. (2013). Genetic diversity and relationship of cattle populations of East India: distinguishing lesser-known cattle populations and established breeds based on STR markers. SpringerPlus, 2(1), 359.‏ https://doi.org/10.1186/2193-1801-2-359
  49. Toro, M. A., & Caballero, A. (2005). Characterization and conservation of genetic diversity in subdivided populations. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 360(1459), 1367–1378. https://doi.org/10.1098/rstb.2005.1680
  50. Weiwei, N., Jiang, A., Zhang, J., Guangxin, E., & Huang, Y. (2018). Microsatellite marker-based estimation of the genetic diversity of cattle in Chongqing. Indian Journal of Animal Research, 52(11), 1543-1547.‏ https://doi.org/10.18805/ijar.B-887
  51. Williamson-Natesan, E. G. (2005). Comparison of methods for detecting bottlenecks from microsatellite loci. Conservation Genetics, 6, 551-562.‏ https://doi.org/10.1007/s10592-005-9009-5
  52. Yeh, F. C., Yang, R. C., Boyle, T. B., Ye, Z. H., & Mao, J. X. (1997). POPGENE, the user-friendly shareware for population genetic analysis, Molecular biology and biotechnology centre, University of Alberta. https://scirp.org/reference/referencespapers?referenceid=1669232