Main Article Content

Abstract

Drought is one of the most damaging abiotic stresses; water deficit problem is increasingly occurring due to global climate change and negatively affects crop growth and productivity. Grafting on tolerate rootstocks is a promise approach to mitigate negative impacts of drought stress and ensure production sustainability. The present study was carried out to investigate the effect of water deficit stress on Coratina olive plants grafted on the following cultivars as rootstocks (Coratina, Koroneiki, Manzanillo, Picual and Sorani). Three water levels based on soil field capacity (FC) (100, 50% and 25% of FC) were used for water deficit treatments. Water deficit decreased shoot growth, stem diameter, leaves number and area, shoot and root weight. Leaf analysis showed marked decrease in total chlorophyll content while proline, total sugars and phenolic content increased with increasing water deficit level. The studied grafting combination differed in their response to water deficit treatments; Coratina grafted on Sorani and Koroneiki recorded higher values of growth parameters and accumulated higher amount of osmolytes (proline and total sugars) and phenolic compared to other grafted olive plants.

Keywords

Drought Grafting Olive Rootstocks Water stress

Article Details

How to Cite
Hegazi, E. S. S. ., Allatif, A. M. A. ., & Abdel-Fattah, A. A. . (2024). Response of Grafted Olive (Olea europaea L. Cv. Coratina) to Water Deficit Conditions. Basrah Journal of Agricultural Sciences, 37(1), 134–148. https://doi.org/10.37077/25200860.2024.37.1.11

References

  1. Abdallah, M. B., Trupiano, D., Polzella, A., De Zio, E., Sassi, M., Scaloni, A., & Scippa, G. S. (2018). Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. Journal of Plant Physiology, 220, 83-95. https://doi.org/10.1016/j.jplph.2017.10.009
  2. Ahmad, P., Hameed, A., Abd-Allah, E. F., Sheikh, S. A., Wani, M. R., Rasool, S., Jamsheed S. & Kumar, A., (2014). Biochemical and Molecular Approaches for Drought Tolerance in Plants. Pp. 1-29. In: Ahmad, P., Wani, M. (Editors). Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Volume 1, Springer, New York, 376pp. https://doi.org/10.1007/978-1-4614-8600-8_1
  3. Ahmed, C. B., Rouina, B. B., Sensoy, S., Boukhris, M., & Abdallah, F. B. (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany, 67(2), 345-352.‏
  4. https://doi.org/10.1016/j.envexpbot.2009.07.006
  5. Anđelković, V., Cvejić, S., Jocić, S., Kondić-Špika, A., Marjanović Jeromela, A., Mikić, S., & Miladinović, D. (2020). Use of plant genetic resources in crop improvement–example of Serbia. Genetic Resources and Crop Evolution, 67(8), 1935-1948.‏
  6. https://doi.org/10.1007/s10722-020-01029-9
  7. Baccari, S., Elloumi, O., Chaari-Rkhis, A., Fenollosa, E., Morales, M., Drira, N., & Munné-Bosch, S. (2020). Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo-and antioxidant protection in juvenile olive trees subjected to severe drought. Frontiers in Plant Science, 11, 614144.‏
  8. https://doi.org/10.3389/fpls.2020.614144
  9. Balal, R. M., Khan, M. M., Shahid, M. A., Mattson, N. S., Abbas, T., Ashfaq, M., Garcia-Sanchez, F., Ghazanfer, U., Gimeno, V., & Iqbal, Z. (2012). Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. Journal of the American Society for Horticultural Science, 137(2), 86-95.
  10. https://doi.org/10.21273/JASHS.137.2.86
  11. Balfagón, D., Terán, F., de Oliveira, T. D. R., Santa-Catarina, C., & Gómez-Cadenas, A. (2021). Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. Plant Cell Reports, 41, 593–602.‏
  12. https://doi.org/10.1007/s00299-021-02744-y
  13. Bates, L. S., Waldren, R. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207.
  14. https://doi.org/10.1007/BF00018060
  15. Ben-Gal, A., Kool, D., Agam, N., van Halsema, G. E., Yermiyahu, U., Yafe, A., Presnov, E., Erel, R., Majdop, A., Zipori, I., Segal, E., Rüger, S., Zimmermann, U., Cohen, Y., Alchanatis, V. & Dag, A. (2010). Whole-tree water balance and indicators for short-term drought stress in non-bearing ‘Barnea’ olives. Agricultural Water Management, 98(1), 124-133.
  16. https://doi.org/10.1016/j.agwat.2010.08.008
  17. Bolat, I., Dikilitas, M., Ercisli, S., Ikinci, A., & Tonkaz, T. (2014). The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. The Scientific World Journal, 2014.
  18. https://doi.org/10.1155/2014/769732
  19. Boussadia, O., Omri, A., & Mzid, N. (2023). Eco-physiological behavior of five Tunisian olive tree cultivars under drought stress. Agronomy, 13(3), 720.‏ https://doi.org/10.3390/agronomy13030720
  20. Cetinkaya, H., Koc, M., & Kulak, M. (2016). Monitoring of mineral and polyphenol content in olive leaves under drought conditions: Application chemometric techniques. Industrial Crops and Products, 88, 78-84.‏
  21. https://doi.org/10.1016/j.indcrop.2016.01.005
  22. Conde-Innamorato, P., García, C., Villamil, J. J., Ibáñez, F., Zoppolo, R., Arias-Sibillotte, M., Ponce De León I., Borsani O., & García-Inza, G. P. (2022). The impact of irrigation on olive fruit yield and oil quality in a humid climate. Agronomy, 12(2), 313.‏ https://doi.org/10.3390/agronomy12020313
  23. Connor, D. J., & Fereres, E. (2010). The physiology of adaptation and yield expression in olive. Horticultural Reviews, 31, 155-229.‏
  24. https://doi.org/10.1002/9780470650882.ch4
  25. De Ollas, C., Morillón, R., Fotopoulos, V., Puértolas, J., Ollitrault, P., Gómez-Cadenas, A., & Arbona, V. (2019). Facing climate change: biotechnology of iconic Mediterranean woody crops. Frontiers in Plant Science, 10, 427.
  26. https://doi.org/10.3389/fpls.2019.00427
  27. Dichio, B., Margiotta, G., Xiloyannis, C., Bufo, S. A., Sofo, A., & Cataldi, T. R. (2009). Changes in water status and osmolyte contents in leaves and roots of olive plants (Olea europaea L.) subjected to water deficit. Trees, 23, 247-256.‏
  28. https://doi.org/10.1007/s00468-008-0272-1
  29. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
  30. https://doi.org/10.1021/ac60111a017
  31. Duncan D. B. (1955) Multiple Range and Multiple F-Tests. Biometrics, 11, 1-42.
  32. https://doi.org/10.2307/3001478
  33. Ennajeh, M., Vadel, A. M., Cochard, H., & Khemira, H. (2010). Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. The Journal of Horticultural Science and Biotechnology, 85(4), 289-294.
  34. https://doi.org/10.1080/14620316.2010.11512670
  35. Eziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., & Fang, J. (2017). Drought effect on plant biomass allocation: A meta‐analysis. Ecology and Evolution, 7(24), 11002-11010.‏
  36. https://doi.org/10.1002/ece3.3630
  37. Falahi, H., Sharifi, M., Maivan, H. Z., & Chashmi, N. A. (2018). Phenylethanoid glycosides accumulation in roots of Scrophularia striata as a response to water stress. Environmental and Experimental Botany, 147, 13-21.
  38. https://doi.org/10.1016/j.envexpbot.2017.11.003
  39. Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought Stress in Plants: An Overview. Plant Responses to Drought Stress. Pp 1–33 In: Aroca, R. (Editor). Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. 466pp.
  40. https://doi.org/10.1007/978-3-642-32653-0_1
  41. Fernandez, J. E. (2014). Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environmental and Experimental Botany, 103, 158-179.
  42. https://doi.org/10.1016/j.envexpbot.2013.12.003
  43. Galindo, A., Collado-González, J., Griñán, I., Corell, M., Centeno, A., Martín-Palomo, M. J., Girón, I.F., Rodríguez, P., Cruz, Z.N., Memmi, H., Carbonell-Barrachina, A.A., Hernández, F., Torrecillas, A., Moriana, A. & Pérez-López, D. (2018). Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agricultural Water Management, 202, 311-324.
  44. https://doi.org/10.1016/j.agwat.2017.08.015
  45. García‐Sánchez, F., Syvertsen, J. P., Gimeno, V., Botía, P., & Perez‐Perez, J. G. (2007). Responses to flooding and drought stress by two citrus rootstock seedlings with different water‐use efficiency. Physiologia Plantarum, 130(4), 532-542.
  46. https://doi.org/10.1111/j.1399-3054.2007.00925.x
  47. Grotkopp, E., & Rejmánek, M. (2007). High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. American Journal of Botany, 94(4), 526-532.‏
  48. https://doi.org/10.3732/ajb.94.4.526
  49. Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368, 266–269. https://doi.org/10.1126/science.aaz7614
  50. Hamed, S. B., Lefi, E., & Chaieb, M. (2016). Physiological responses of Pistacia vera L. versus Pistacia atlantica Desf. to water stress conditions under arid bioclimate in Tunisia. Scientia Horticulturae, 203, 224-230.
  51. https://doi.org/10.1016/j.scienta.2016.03.019
  52. Hagagg, L. F., Merwad, M. A., Shahin, M. M., & El-Hady, E. S. (2020). Ameliorative effect of foliar application of calcium on vegetative growth and mineral contents of olive trees Kalmata and Manzanillo cultivars irrigated with saline water. Bulletin of the National Research Centre, 44, 128.
  53. https://doi.org/10.1186/s42269-020-00374-0
  54. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463-499.
  55. https://doi.org/10.1146/annurev.arplant.51.1.463
  56. Hegazi, E. S. S., Abd Allatif, A. M., & Abdel-Fattah, A. A. (2018). Performance of in vitro propagated olive (Olea europea cv. Manzanillo) under drought stress. Bioscience Research, 15(1), 110-116.
  57. Hmmam, I., Ali, A. E., Saleh, S. M., Khedr, N., & Abdellatif, A. (2022). The role of salicylic acid in mitigating the adverse effects of chilling stress on “Seddik” mango transplants. Agronomy, 12(6), 1369.‏ https://doi.org/10.3390/agronomy12061369
  58. James, J. J., & Drenovsky, R. E. (2007). A basis for relative growth rate differences between native and invasive forb seedlings. Rangeland Ecology & Management, 60(4), 395-400.
  59. https://doi.org/10.2111/1551-5028(2007)60[395:ABFRGR]2.0.CO;2
  60. Karim, S. A., Qadir, S. A., & Sabr, H. A. (2020). Study some of morphological and physiological traits of Kurrajong Brachychiton populneus (Schott & Endl.) seedlings planted under water stress conditions. Basrah Journal of Agricultural Sciences, 33(1), 213-220.‏https://doi.org/10.37077/25200860.2020.33.1.16
  61. Kumar, P., Rouphael, Y., Cardarelli, M., & Colla, G. (2017). Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in plant science, 8, 1130.‏
  62. https://doi.org/10.3389/fpls.2017.01130
  63. Loumou, A., & Giourga, C. (2003) Olive groves: The life and identity of the Mediterranean. Agriculture and Human Values, 20, 87–95.
  64. https://doi.org/10.1023/A:1022444005336
  65. Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C., & Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New phytologist, 194(2), 416-429.
  66. https://doi.org/10.1111/j.1469-8137.2012.04059.x
  67. Markwell, J.; Osterman, J. C., & Mitchell, J. L. (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46(3), 467-472‏. https://doi.org/10.1007/BF00032301
  68. Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic acids research, 43(W1), W566-W570.
  69. https://doi.org/10.1093/nar/gkv468
  70. Mourão Filho, F. D. A. A., Espinoza-Núñez, E., Stuchi, E. S., & Ortega, E. M. M. (2007). Plant growth, yield, and fruit quality of ‘Fallglo’and ‘Sunburst’mandarins on four rootstocks. Scientia Horticulturae, 114(1), 45-49.‏
  71. https://doi.org/10.1016/j.scienta.2007.05.007
  72. Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. Current opinion in plant biology, 24, 10-16.
  73. https://doi.org/10.1016/j.pbi.2015.01.003
  74. Nawaz, M. A., Imtiaz, M., Kong, Q., Cheng, F., Ahmed, W., Huang, Y., & Bie, Z. (2016). Grafting: a technique to modify ion accumulation in horticultural crops. Frontiers in Plant Science, 7, 1457.‏ https://doi.org/10.3389/fpls.2016.01457
  75. Perez-Martin, A., Michelazzo, C., Torres-Ruiz, J. M., Flexas, J., Fernández, J. E., Sebastiani, L., & Diaz-Espejo, A. (2014). Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. Journal of Experimental Botany, 65(12), 3143-3156.
  76. https://doi.org/10.1093/jxb/eru160
  77. Petridis, A., Therios, I., Samouris, G., Koundouras, S., & Giannakoula, A. (2012). Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive (Olea europaea L.) cultivars. Plant Physiology and Biochemistry, 60, 1-11.‏
  78. https://doi.org/10.1016/j.plaphy.2012.07.014
  79. Pierantozzi, P., Torres, M., Tivani, M., Contreras, C., Gentili, L., Parera, C., & Maestri, D. (2020). Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters. Agricultural Water Management, 238, 106212.
  80. Qadir, S. A., Sabr, H. A., & Younis, A. M. (2022). Growth Performance of Black poplar (Populus nigra L.) Under Drought Condition and Sewage Water Irrigation. Basrah Journal of Agricultural Sciences, 35(1), 21-34.‏
  81. https://doi.org/10.37077/25200860.2022.35.1.02
  82. Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  83. Rhodes, D., Nadolska-Orczyk, A., & Rich, P. J. (2002). Salinity, osmolytes and compatible solutes. pp. 181-204. In: Läuchli, A., & Lüttge, U. (Editors) Salinity: Environment – Plants – Molecules. Springer, Dordrecht. 566pp. https://doi.org/10.1007/0-306-48155-3_9
  84. Sharma, R. M., Dubey, A. K., Awasthi, O. P., & Kaur, C. (2016). Growth, yield, fruit quality and leaf nutrient status of grapefruit (Citrus paradisi Macf.): Variation from rootstocks. Scientia Horticulturae, 210, 41-48.‏
  85. https://doi.org/10.1016/j.scienta.2016.07.013
  86. Shehata, S. A., Omar, H. S., Elfaidy, A. G., El-Sayed, S. S., Abuarab, M. E., & Abdeldaym, E. A. (2022). Grafting enhances drought tolerance by regulating stress-responsive gene expression and antioxidant enzyme activities in cucumbers. BMC Plant Biology, 22(1), 1-17.‏
  87. https://doi.org/10.1186/s12870-022-03791-7
  88. Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods. 6th edition, Oxford and IBH Publishing Co. New delhi.‏ New Delhi., 553pp.
  89. Stegemann, S., & Bock, R. (2009). Exchange of genetic material between cells in plant tissue grafts. Science, 324, 5927, 649-651.‏
  90. https://doi.org/10.1126/science.1170397
  91. Therios, I. (2009). Olives: Crop Production Science in Horticulture 18, Wallingford: CABI Publishing, 409pp.https://doi.org/10.1017/S0014479709990342
  92. Trabelsi, L., Gargouri, K., Hassena, A. B., Mbadra, C., Ghrab, M., Ncube, B., van Staden, J. & Gargouri, R. (2019). Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agricultural Water Management, 213, 749-759. https://doi.org/10.1016/j.agwat.2018.11.025
  93. Trifilò, P., Lo Gullo, M. A., Nardini, A., Pernice, F., & Salleo, S. (2007). Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L. Trees, 21, 549-556.
  94. https://doi.org/10.1007/s00468-007-0148-9
  95. Yang, L., Xia, L., Zeng, Y., Han, Q., & Zhang, S. (2022). Grafting enhances plants drought resistance: current understanding, mechanisms, and future perspectives. Frontiers in Plant Science, 13, 1015317.https://doi.org/10.3389/fpls.2022.1015317
  96. Zia, R., Nawaz, M. S., Siddique, M. J., Hakim, S., & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242, 126626.
  97. https://doi.org/10.1016/j.micres.2020.126626