Main Article Content

Abstract

Organic nitrogen, which comes from amino acids, is absorbed and transported more rapidly than inorganic nitrogen by plant cells and tissues. Therefore, this study was conducted to evaluate the effect of some amino acids on the response of single nodes of grape Vitis vinifera L. Superior and Red globe cultivars were classified for in vitro multiplication to develop an efficient protocol for propagation of these two valuable species. The study included two experiments: first, the effect of adding three concentrations (0, 0.5, and 1) mg L-1 of Benzyl Adenine (BA) to the MS medium in the initiation stage. The second investigation utilized three amino acid types (glutamine, asparagine, and methionine) at five concentrations (0, 10, 20, 40, and 80) mg L-1 added to MS medium containing 2 mg L-1 of BA. Results indicated that the most significant newly initiated shoots (2.40 and 2.88) and the largest leaves number (7.90 and 5.88) for both cultivars, Superior and Red globe, respectively were obtained in a medium with 1 mg L-1 of BA. The multiplication results in eight weeks after cultivation showed that adding amino acid glutamine at 10 mg L-1 significantly increased the number of shoots/explant (6.60 and 6.00) and (29.50 and 38.30) leaves/explant for Red globe and Superior, respectively. The high amino acid concentrations (40 and 80) mg L-1 significantly reduced the studied growth parameters, especially the number of newly formed shoots. The results obtained from the present study exhibited the possibility of applying this modified protocol to the propagation of selected grape cultivars to encourage the expansion of the grape-growing industry in Iraq.

Keywords

Asparagine Glutamine Methionine Micropropagation Red globe Superior

Article Details

How to Cite
Faizy, W. S. ., Bashi, A. Z. A. K. ., & Toma, R. S. . (2024). Some Amino Acids Affect the Response of Grape (Vitis vinifera L.) Single Nodules In Vitro Multiplication. Basrah Journal of Agricultural Sciences, 37(1), 149–163. https://doi.org/10.37077/25200860.2024.37.1.12

References

  1. Akhtar, G., Jaskani, M. J., Sajjad, Y., & Akram, A. (2016). Effect of antioxidants, amino acids and plant growth regulators on in vitro propagation of Rosa centifolia. Iranian Journal of Biotechnology, 14, 51-55. e1152. https://doi.org/doi/10.15171/ijb.1152
  2. Alizadeh, M., Singh, S. K., & Patel, B. V. (2010). Comparative performance of in vitro multiplication in four grape (Vitis spp.) rootstock genotypes. International Journal of Plant Production, 4(1), 1735-6814. https://doi.org/10.22069/IJPP.2012.680
  3. Al-Saeedi, I. H. M. (1982). Vineyard cultivation and production. Ministry of Higher Education and Scientific Research: University of Mosul press, Iraq. 608pp. (In Arabic).
  4. Alzubi, H., Yepes L. M., & Fuchs, M. (2012). Enhanced micropropagation and establishment of grapevine rootstock genotypes. International Journal of Plant Developmental Biology, 6(1), 9-14. https://n9.cl/21nce
  5. Batukaev, A., Sobralieva, E., & Palaeva, D. (2021). Optimization studies of culture media for in-vitro clonal micropropagation of new grape varieties. International research conference on Challenges and Advances in Farming, Food Manufacturing. Agricultural Research and Education, KnE Life Sciences, 757–764.
  6. https://doi.org/10.18502/kls.v0i0.9013
  7. El-Sharabasy, S., Issa, F., Hammad, G. & El-Dawayaty, M. (2015). Effect of different amino acids at different concentrations on multiplication and rooting stage of in vitro propagation of strawberries (Fragaria x ananassa Duch cv. Chandler). Egyptian Journal of Genetics and Cytology, 44, 31–45.
  8. https://journal.esg.net.eg/index.php/EJGC/article/view/126
  9. Fay, P. A., & Throop, H. L. (2005). Branching responses in Silphium integrifolium (Asteracea) following mechanical or gall damage to apical meristems and removal. American Journal of Botany. 92(6), 675- 677. https://doi.org/10.3732/ajb.92.6.954
  10. George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). Plant Growth Regulators II: Cytokinins, their Analogues and Antagonists. In: George, E. F., Hall, M. A., & Klerk, G. J. D. (Editors). Plant Propagation by Tissue Culture. Springer, Dordrecht.
  11. https://doi.org/10.1007/978-1-4020-5005-3_6
  12. Greenwell, Z. L., & Ruter, J. M. (2018). Effect of glutamine and arginine on growth of Hibiscus moscheutos “in vitro”. Ornamental Horticulture, 24, 393–399. https://doi.org/10.14295/oh.v24i4.1198
  13. Hamdeni, I., Louhaichi, M., Slim, S., Boulila, A., & Bettaieb, T. (2022). Incorporation of organic growth additives to enhance in vitro tissue culture for producing genetically stable plants. Plants, 11, 3087. https://doi.org/10.3390/plants11223087
  14. Hartmann, H. T., Kester, D. E., Davies, F. T., & Geneve, R. L. (2011). Plant Propagation, Principles and Practices. 8th ed. Prentice Hall, Upper Saddle River, New Jersey, 880pp.
  15. Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., & Doležal, K. (2018). Role of Cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences, 19(12), 4045.
  16. https://doi.org/10.3390/ijms19124045
  17. Jayakumar, S., & Ramalingam, R. (2013). Influence of additives on enhanced in vitro shoot multiplication of Orthosiphon aristatus (Blume) Miq. Notulae Scientia Biologcae, 5, 338–345.
  18. https://doi.org/10.15835/nsb539068
  19. Kim, Y. W., & Moon, H. K. (2007). Enhancement of somatic embryogenesis and plant regeneration in Japanese Larch (Lerix leptolepis). Plant Cell Tissue Organ Culture, 88, 241-245. https://doi.org/10.1007/s11240-007-9202-y
  20. Kizi, D. N. E., Turdiqulovich, J. S., & Kizi, I. M. H. (2022). Effect of bap concentration and content of food environment on “in vitro” regeneration of rizamat (Vitis vinifera L.) cultivar. European Journal of Agricultural and Rural Education (EJARE), 3(2), 75-78. https://scholarzest.com/index.php/ejare/article/view/1862
  21. Lehmann, T., & Ratajczak, L. (2008). The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagine in germinating seeds of yellow lupine. Journal of Plant Physiology, 165, 149-158.
  22. https://doi.org/10.1016/j.jplph.2006.12.010
  23. Mandal, S., Parsai, A., Tiwari, P. K., & Nataraj, J. (2021). The effect of additional additives on the axillary shoot micropropagation of medicinal plant Aegle marmelos (L.) Corrêa. World News of Natural Sciences, 34, 54–71.http://www.worldnewsnaturalsciences.com/article-in-press/2021-2/34-2021/
  24. Melyan, G., Sahakyan A., & Harutyunyan, A. (2015). Micropropagation of grapevine (Vitis vinifera L.) seedless cultivar 'Parvana' through lateral bud development. Vitis, 54, 253-255.
  25. https://doi.org/10.5073/vitis.2015.54.special-issue.253-255
  26. Miflin, B. J., & Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 53(370), 979–987.
  27. https://doi.org/10.1093/jexbot/53.370.979
  28. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
  29. https://doi.org/10.1111/j.1399 3054.1962.tb08052.x
  30. Pasternak, T. P., & Steinmacher, D. (2024). Plant growth regulation in cell and tissue culture in vitro. Plants. 13(2), 327. https://doi.org/10.3390/plants13020327
  31. Pawar, B., Kale, P., Bahurupe, J., Jadhav, A., Kale, A., & Pawar, S. (2015). Proline and glutamine improve in vitro callus induction and subsequent shooting in rice. Rice Science, 22, 283–289.
  32. https://doi.org/10.1016/j.rsci.2015.11.001
  33. Rathore, J. S., Rathore, V., Shekhawat, N. S., Singh, R. P., Liler, G., Phulwaria, M., & Dagla, H. R. (2005). Micropropagation of woody plants. Pp. 195-205. In: Srivastava, P. S., Narula, A., Srivastava, S., (Editors). Plant biotechnology and molecular markers. Springer, Dordrecht, https://doi.org/10.1007/1-4020-3213-7_13
  34. Reynolds, A. G. (2017). The grapevine, viticulture, and winemaking: A brief introduction. Pp, 3–29. In, Meng, B., Martelli, G. P., Golino, D. A., & Fuchs, M. (Editors). Grapevine Viruses: Molecular Biology, Diagnostics and Management, Springer International Publishing AG 2017, 698pp.
  35. https://doi.org/10.1007/978-3-319-57706-7_1
  36. Samiei, L., Pahnehkolayi, M. D., Tehranifar A. & Karimian, Z. (2021). Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. Journal of Genetic Engineering and Biotechnology, 19, 60.
  37. https://doi.org/10.1186/s43141-021-00166-7
  38. Sammona, O. S. (2022). Micropropagation of grapevine (Vitis vinifera L.) cvs. Red Globee and superior. Iraqi Journal of Agricultural Sciences, 53(4), 833- 849.
  39. https://doi.org/10.36103/ijas.v53i4.1596
  40. Siwach, P., Chanana, S., Gill, A. R., Dhanda, P., Ran J., Sharma, K., Rani, H., & Kumar, D. (2012). Effects of adenine sulphate, glutamine and casein hydrolysate on in vitro shoot multiplication and rooting of Kinnow mandarin (Citrus reticulata Blanco). African Journal of Biotechnology, 11(92), 15852-15862, 15.
  41. https://doi.org/10.5897/AJB12.3244
  42. Sungdae, P. (2002). Structural studies on Sinorhizobium meliloti Dctd related to ATP binding and activation. Ph. D. Thesis, Pennsylvania State University, 115pp.
  43. https://etda.libraries.psu.edu/catalog/5948
  44. Vesco, L., Guerra, M., & Dal-Vesco, L. (2001). The effectiveness of nitrogen sources in Feijoa somatic embryogenesis. Plant Cell, Tissue and organ culture, 64, 19–25. https://doi.org/10.1023/A:1010635926146
  45. Yang, G., Wei, O., Huang, H., & Xia, J. (2020). Amino acid transporters in plant cells: A brief review. Plants, 9(8), 967. https://doi.org/10.3390/plants9080967
  46. Yildirim, H., Onay, A., Gunduz, K., Ercisli S., & Karaat, F. E. (2019). An improved micropropagation protocol for lentisk (Pistacia lentiscus L.). Folia Horticulture, 31(1), 61-69.
  47. https://doi.org/10.2478/fhort-2019-0003
  48. Zamir, R., Muhamad Sajid, A., & Ahmad, I. (2017). Influence of zeatin, glutamin and auxins on root and shoot organogenesis of guava (Psidium guajava L.) cv. safeda seedling explants. Pure and Applied Biology (PAB), 6(1), 197-206.
  49. https://www.thepab.org/index.php/journal/article/view/43
  50. Zhang, H., Jennings, A., Barlow, W. P., & Forde, G. B. (1999). Dual pathways for regulation of root branching by nitrate. Plant Biology, 96, 6529-6534.
  51. https://doi.org/10.1073/pnas.96.11.6529.