Main Article Content

Abstract

An experiment was conducted during the winter season 2018-2019 at Abu Al-Khaseeb district, Basrah province, Iraq to study the effect of soaking seed with molybdenum (Ammonium molybdate) at a four concentration (0,5, 10 and15) mg.L-1 and plant spraying with selenium (Sodium selenite) at a three concentration (0, 10 and 20 mg.L-1) on growth and yield of green peas. Split plot design according to complete Block randomized design was used with three replicates. The results were showed that the soaking and spraying of plants with molybdenum and selenium respectively were significantly superior in the number of branches, root nodules, pods, the yield of plant pods and fresh seeds compared to the control. While the spraying with selenium had a significant effect on the number of leaves. The interaction between molybdenum and selenium had a significant effect on leaves area, the number of leaves, root nodules and pods, the yield of pod and fresh seeds plants treated with molybdenum and selenium at 10 mg.L-1 for each other had to get the highest yield of green pods and fresh seeds 118.6 and 287.0 gm, respectively.

Keywords

Pea plants Molybdenum Selenium Vegetative growth Qualitative yield Legumes

Article Details

How to Cite
Al-Jaberi, A. J. . ., Abdulla , A. A. ., & Shano, H. S. . (2019). Effect of Seeds Soaking with Molybdenum, Spraying with Selenium and Interaction Between them on Growth and Yield of Green Peas (Pisum sativum L.). Basrah J. Agric. Sci., 32, 220–230. https://doi.org/10.37077/25200860.2019.270

References

  1. Abdel-Aziz, M.A. & Geeth, K.H.M. (2017). Effect of spraying by some substances on low temperature stress for growth and productivity in late peas (Pisum sativum L.) planting under the middle Egypt region conditions. J. Plant Production, Mansoura Univ., 8(8): 859-867 .
  2. Abu Dahi, Y. & Al-Younis, M.A. (1988). Directory of Plant Nutrition. Min. High. Educ. Sci. Res. Univ. Baghdad. 411pp. (In Arabic).
  3. Abul-Soud, M.A & Abd-Elrahman, S.H. (2016). Foliar selenium application to improve the tolerance of eggplant grown under salt stress conditions. Int. J. Plant. Soil. Sci., 9(1): 1-10.
  4. Al-Abdullah, N.N.H. (2018). Effect of selenium in improving on salinity tolerance of two cultivars of okra (Abelmoschus esculentus L.) cultivated in greenhouses. Ph. D. Thesis, Coll. Agric., Univ. Basrah. Iraq. 210pp. (In Arabic).
  5. Al-Jubouri, F. (2015). Effect of molybdenum seed soaking and spray plants with boron on growth and yield of broad bean (Vicia faba L.). M. Sc. Thesis, Coll. Agric., Univ. Baghdad: 56pp. (In Arabic).
  6. Al-Kazzaz, A.G.M. (2018). Effect of salinity stress and selenium spraying on broad bean plant Vicia faba L.. Plant Archives, 18(2): 2335-2339.
  7. Al-Kazzaz, A.G.M.; Al-Attar, B.R.W.M.; Hayani, I.H.H. & Yahya, S.S. (2017). The role of selenium in tolerance of broad bean plant Vicia faba L. to salinity stress. Int. J. Sci. Tech., 12(2): 53-58.
  8. Al-Rawi, K.M. & Khalaf-Allah, A.M. (1980) Design and analysis of agricultural experiments. Iraq. Dar Al Kutub for Printing and Publishing. Univ. Mosul: 487pp. (In Arabic).
  9. Al-Rikabi, M.N.M. & Al-Jubouri, K.D.H. (2017a). Effect of biofertilizers and molybdenum on growth and yield of green beans. J. Iraqi Agri. Sci., 48(3): 681-689.
  10. Al-Rikabi, M.NM. & Al-Jubouri, K.D.H. (2017b). Response of green beans to nitrogen-molybdenum-fixing bacterial vaccine. J. Iraqi Agri. Sci., 48(2): 413-421.
  11. Al-Saidi, S.H. (2005). Plant breeding under different stress conditions and scarce resources (low input and physiological bases her). Dar Alnshr for Univ.: 331pp.
  12. Arab Organization for Agricultural Development (2016). Year book of Agricultural Statistics, Vol. 36, Khartoum: 430pp. (In Arabic).
  13. Boghdady, M.S.; Desoky, E.M.; Azoz, S.N. & Nassar, D.M.A. (2017). Effect of selenium on growth, physiological aspects and productivity of Faba Bean (Vicia faba L.). Egypt. J. Agron., 39(1): 83- 97.
  14. Castillo-Godina, R.G.; Foroughbakhch-Pournavab,R. & Benavides-Mendoza, A. (2016). Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato Plants. J. Agric. Sci. Tech., 18: 233-244.
  15. Das, R.; Mandal, R.; Chattopadhayay, S.B. & Thapa, U. (2015). Synergistic influence of macro nutrient, micro nutrient and bio-fertilizer on root nodulation, growth and yield of garden pea (Pisum sativum L.). The Bioscan., 10(1): 291-297.
  16. Eisa, G.S.A. & Ali, T.B. (2014). Impact spraying of some microelements on growth, yield, nitrogenase activity and anatomical features of cowpea plants. World J. Agric. Sci., 10(2): 57-67.
  17. El-Hersh, M.S.; Abdel-Hai, K.M. & Ghanem, K.M. (2011). Efficiency of molybdenum and cobalt elements on the lentil pathogens and nitrogen fixation. Asian J. Plant Path., 5: 102-114.
  18. Elkhatib, H.A. (2009). Growth and yield of common bean (Phaseolus vulgaris L.) in response to rhizobium inoculation, nitrogen and molybdenum fertilization. Alexandria Sci. Exchange J., 30(2): 319-332.
  19. El-Missry, M.A. (2012). Antioxidant enzymes. Intech,. Univ. Mansoura, 410pp.
  20. Gad, N. & Abdel-Moez, M.R. (2013). Influenced of molybdenum on nodulation, nitrogen fixation and yield of cowpea. J. Appl. Sci. Res., 9(3): 1498-1504.
  21. Hassannzzuman, M.A. & Fujita, M. (2010). Selenium in higher plants physiological role antioxidant metabolism and tolerance. J. Plant Sci., Acad. J., 5(4): 354-375.
  22. Hassannzzuman, M. & Fujita, M. (2011). Selenium pretreatment up regulates the antioxidant defense and methyl glyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol. Trace Elem. Res., 143(3): 1758-1776.
  23. Hassannzzuman, M.; Hossain, M.A. & Fujita, M. (2011). Selenium-induced up-regulation of the antioxidant defense and methyl glyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol. Trace Elem. Res., 143(3): 1704-1721.
  24. Hatfield, D.L.; Berry, M.J. & Gladyshev, V.N. (2012). Selenium its Molecular Biology and Role in Human Health. 3rd ed. Springer, London: 591pp.
  25. Hidayatullah; K.; Tahir, M.; Kakar, A.S.; Shah, S.G. & Usman, M. (2016). Response of peas to molybdenum application with and without rhizobium inoculum under alkaline calcareous soils. Sci. Int. (Lahore), 28(5): 4753-4758.
  26. Hirpara, D.V.; Sakarvadia, H.L.; Savaliya, C.M.; Ranpariya, V.S. & Modhavadiya, V.L. (2017). Effect of different levels of boron and molybdenum on growth and yield of summer groundnut (Arachis hypogaea L.) under medium black calcareous soils of south Saurashtra region of Gujarat. Int. J. Chem. Stud., 5(5): 1290-1293.
  27. Kandil, H.; Gad, N. & Abdel-Hamid, M.T. (2013). Effects of different rates of phosphorus and molybdenum application on two varieties common bean of (Phaseolus vulgaris L.). J. Agric. Food. Tech., 3(3): 8-16.
  28. Khan, N.; Tariq, M.; Khitab-Ullah; Muhammad, D.; Khan, I.; Rahat-Ullah, K.; Ahmed, N. & Ahmed, S. (2014). The effect of molybdenum and iron on nodulation, nitrogen fixation and yield of chickpea genotypes (Cicer arietinum L.). J. Agric. Vet. Sci., 7(1): 63-79.
  29. Kovacs, R.B. (2016). Accumulation of selenium in the main parts of crops grown in soils and hydroponics. Ph. Thesis. Univ. Debrecen: 29pp.
  30. Malik, J.A.; Kumar, S.; Thakur, P.; Sharma, S.; Kaur N.; Kaur, R.; Pathania, D.; Bhandhari, K.; Kaushal, N.; Singh, K.; Srivastava, A. & Nayyar H. (2011). Promotion of growth in mung bean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biol. Trace Elem. Res., 143(1): 530-539.
  31. Mass, E. & Hoffiman, G. (1976). Evaluation of existing data of crop salt tolerance. Proceeding Int. Salinity Conf. Texas: 20-23 1976, April: 187-189.
  32. Matlub, A.N.; Mohammed, E.S.& Abdul, K.S. (1989). Vegetable Crops Production. 2nd ed. Min. Hig. Educ. Sci. Res. Univ. Mosul. (In Arabic).
  33. Mazzafera, P. (1998). Growth and biochemical alterations in coffee due to selenite toxicity. Plant Soil, 201: 189-196.
  34. Morsi, M, A.; Abdel-Gawad, A. & Tawfik, H.A. (1968). Fundation Agriculture Research, Anglo Egyptian Library, Cairo: 631pp.
  35. Owusu-Sekyere, A.; Kontturi, J.; Hajiboland, R.; Rahmat S.; Aliasgharzad, N.; Hartikainen, H. & Seppanen, M.M. (2013). Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (Medicago sativa L.). Plant Soil, 373(112): 541-552.
  36. Ren, Q.; Sun, R.R.; Zhao, X.F. & Wang, J.X. (2009). A selenium-dependent glutathione peroxidase (Se-GPx) and two glutathione S-transferases (GSTs) from Chinese shrimp (Fenneropenaeus chinensis). Comp. Biochem. Physiol. Toxicol. Pharmacol., 149(4): 613-623.
  37. Said, M.T.; Abdul-Amir, M.R. & Said, K.S. (1991). Effect of bacterial vaccine, nitrogen and molybdenum on the formation of root nodules and the proportion of nitrogen in the soil on the annual plant Medicago spp. J. Iraqi Agric. Sci., 22(2): 125-136.
  38. Shedeed, S.L.; Fawzy, Z.F. & El-Bassiony, A.M. (2018). Nano and Mineral selenium foliar application effect on pea plants (Pisum sativum L.). Biol. Sci. Res., 15(2): 645-654.
  39. Tahir, M.; Sher, A. & Majeed, M.A. (2014). Effect of molybdenum on yield and quality of Black gram (Vigna mungo L.). Pak. J. Life. Soc. Sci., 12(2): 101-105.
  40. Timothy, P. (2001). Implication of effect of selected selenium status; oxidative stress. Biochem. Pharm., 62: 273-281.
  41. Whiting, D. & Wilson, C. (2003). Colorado master gardens. Academic Press, Colorado state Univ., 5pp.
  42. Xue, T.; Hartikainen, H. & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil, 237(1): 55-61.
  43. Zilanirabbi, A.K.M. (2007). Effect of nitrogen and molybdenum on the growth and yield of garden pea (Pisum Sativum L.). M. Sc. Thesis., Agric., Univ. Dha: 70pp.