Main Article Content

Abstract

Silybum marianum L. is considered one of the most extensively used medicinal plants worldwide due to its therapeutic benefits. While ultrasound waves were used to enhance the properties of numerous plant species. However, no study was investigated on applying ultrasonic waves to this particular plant. Therefore, the study amid to assess the impact of different exposure periods (0,10, 20, 25, 30, 35, and 40 minutes) of a frequency of 47.6 KHz on callus induction, protein content, and plant regeneration in S. marianum. The effect of ultrasonication was distinctive in accelerating callus induction of S. marianum, especially in short exposing periods (10 and 20 minutes). The percentage of callus formation reached 100%, 83.3% for cotyledons and stem respectively, when exposed to 20 minutes of ultrasound. Additionally, growth and total protein content were increased at 40 days and 80 days post- treatments. In contrast, long exposing periods (30, 35, and 40 minutes) had a negative impact on callus induction from all explants, as well as on callus growth and protein content. Moreover, ultrasonication stimulated one-step shoot regeneration during callus induction. The percentage of this phenomenon reached 100% for cotyledon at 10 and 20 minutes exposing period. This study confirmed the advantages of applying ultrasonic waves, particularly during shorter period to enhance the cultivation of S. marianum in vitro.

Keywords

Explants Milk thistle Shoot regeneration Ultrasonic waves

Article Details

How to Cite
Salih, S. M. . (2024). Sonication Assisted Callus Growth, Protein Content, and Plant Regeneration of Silybum marianum L. Basrah Journal of Agricultural Sciences, 37(2), 17–26. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1977

References

  1. Abbasi, B. H., Khan, M. A., Mahmood, T., Ahmad, M., Chaudhary, M. F., & Khan, M. A. (2010). Shoot regeneration and free-radical scavenging activity in Silybum marianum L. Plant Cell, Tissue and Organ Culture, 101(3), 371-376. https://doi.org/10.1007/s11240-010-9692-x
  2. Abdel-Latif, H. M., Shukry, M., Noreldin, A. E., Ahmed, H. A., El-Bahrawy, A., Ghetas, H. A., & Khalifa, E. (2023). Milk thistle (Silybum marianum) extract improves growth, immunity, serum biochemical indices, antioxidant state, hepatic histoarchitecture, and intestinal histomorphometry of striped catfish, Pangasianodon hypophthalmus. Aquaculture, 562, 738761. https://doi.org/10.1016/j.aquaculture.2022.738761
  3. Abebaw, Y. M., Tobiaw, D. C., Abate, B. A., Eshete, B. K., Seymour, S. K., & Tesfaye, K. (2021). Plant tissue culture research and development in Ethiopia: a case study on current status, opportunities, and challenges. Advances in Agriculture, 2021, 1-12. https://doi.org/10.1155/2021/9979549
  4. Al-Mashhadani, A. R. M. (2018). Supporting callus initiation and differentiation of Silybum marianum L. plant by exposing to two types of laser. M. Sc. Thesis, University of Mosul. 89pp. (In Arabic).
  5. Ananthakrishnan, G., Xia, X., Amutha, S., Singer, S., Muruganantham, M., Yablonsky, S., & Gaba, V. (2007). Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Reports, 26(3), 267-276. https://doi.org/10.1007/s00299-006-0235-1
  6. Bourgine, B., & Guihur, A. (2021). Heat shock signaling in land plants: From plasma membrane sensing to the transcription of small heat shock proteins. Frontiers in plant Science, 12,710801. https://doi.org/10.3389/fpls.2021.710801
  7. Carrillo-Lopez, L. M., Garcia-Galicia, I. A., Tirado-Gallegos, J. M., Sanchez-Vega, R., Huerta-Jimenez, M., Ashokkumar, M., & Alarcon-Rojo, A. D. (2021). Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. Ultrasonics Sonochemistry, 73, 105467. https://doi.org/10.1016/j.ultsonch.2021.105467
  8. Delran, P., Frances, C., Peydecastaing, J., Pontalier, P. Y., Guihéneuf, F., & Barthe, L. (2023). Cell destruction level and metabolites green-extraction of Tetraselmis suecica by low and intermediate frequency ultrasound. Ultrasonics Sonochemistry, 98, 106492.https://doi.org/10.1016/j.ultsonch.2023.106492
  9. Dobránszki, J., Hidvégi, N., Gulyás, A., Tóth, B., & Da Silva, J. A. T. (2020). Abiotic stress elements in in vitro potato (Solanum tuberosum L.) exposed to air-based and liquid-based ultrasound: A comparative transcriptomic assessment. Progress in Biophysics and Molecular Biology, 158, 47-56. https://doi.org/10.1016/j.pbiomolbio.2020.09.001
  10. Duncan, D. B. (1955). Multiple Range and Multiple F-Test. Biometrics, 11, 1-5.
  11. Eari, S., Aghdasi, M., Ahmadzadeh, E., & Mianabadi, M. (2017). Influence of plant growth regulators on callus induction, silymarin production and antioxidant activity in Milk Thistle (Silybum marianum L. Gaertn.) under tissue culture medium. Journal of Medicinal plants and By-product, 6(1), 59-69.https://jmpb.areeo.ac.ir/article_113151.html
  12. Ghanati, F., Safari, M., & Hajnorouzi, A. (2015). Partial clarification of signaling pathway of taxanes increase biosynthesis by low intensity ultrasound treatment in hazel (Corylus avellana) cells. South African Journal of Botany, 96, 65-70. https://doi.org/10.1016/j.sajb.2014.10.012
  13. González-Gordo, S., Palma, J. M., & Corpas, F. J. (2023). Small Heat Shock Protein (sHSP) gene family from sweet pepper (Capsicum annuum L.) fruits: Involvement in ripening and modulation by nitric oxide (NO). Plants, 12(2), 389. https://doi.org/10.3390/plants12020389
  14. Huang, Y., Mei, G., Fu, X., Wang, Y., Ruan, X., & Cao, D. (2022). Ultrasonic waves regulate antioxidant defense and gluconeogenesis to improve germination from naturally aged soybean seeds. Frontiers in Plant Science, 13, 833858. https://doi.org/10.3389/fpls.2022.833858
  15. Khan, A., Shah, A. H., and Ali, N. (2021). In-vitro propagation and phytochemical profiling of a highly medicinal and endemic plant species of the Himalayan region (Saussurea costus). Scientific Reports, 11(1), 23575.https://doi.org/10.1038/s41598-021-03032-1
  16. Kim, J. Y., Lee, H. J., Kim, J. A., & Jeong, M. J. (2021). Sound waves promote Arabidopsis thaliana root growth by regulating root phytohormone content. International Journal of Molecular Sciences, 22(11), 5739. https://doi.org/10.3390/ijms22115739
  17. Koochani, M., Ahmad, M. A. J. D., Arbabian, S., Ghanati, F., & Marandi, S. J. (2020). A comparative study on the effects of ultrasound and some growth factors on somatic embryogenesis and artificial seed production in cucumber (Cucumis sativus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1915-1928.https://doi.org/10.15835/nbha48411669
  18. Lowry, O. H., Rosebrough, N. J., Farr, A., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.https://www.jbc.org/article/S0021-9258(19)52451-6/fulltext
  19. Mahood, H. E. (2021). Effect of plant growth regulators and explant source on the induction of callus of Dianthus caryophyllus L. Basrah Journal of Agricultural Sciences, 34(2), 100-106. https://doi.org/10.37077/25200860.2021.34.2.08
  20. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  21. Nowacka, M., & Wedzik, M. (2016). Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Applied Acoustics, 103, 163-171. https://doi.org/10.1016/j.apacoust.2015.06.011
  22. Patero, T., & Augusto, P. E. (2015). Ultrasound (US) enhances the hydration of sorghum (Sorghum bicolor) grains. Ultrasonics Sonochemistry, 23, 11-15. https://www.sciencedirect.com/science/article/pii/S1350417714003277?via%3Dihub
  23. Peng, Y., Zhang, Z., Kong, Y., Li, Y., Zhou, Y., Shi, X., & Shi, X. (2020). Effects of ultrasound on Microcystis aeruginosa cell destruction and release of intracellular organic matter. Ultrasonics sonochemistry, 63, 104909.
  24. https://doi.org/10.1016/j.ultsonch.2019.104909
  25. Pérez-Caselles, C., Faize, L., Burgos, L., & Alburquerque, N. (2021).Improving adventitious shoot regeneration and transient Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) hypocotyl sections. Agronomy, 11(7), 1338.https://doi.org/10.3390/agronomy11071338
  26. Pickova, D., Ostry, V., Toman, J., & Malir, F. (2020). Presence of mycotoxins in milk thistle (Silybum marianum) food supplements: A review. Toxins, 12(12), 782. https://doi.org/10.3390/toxins12120782
  27. Quarato, C. M. I., Lacedonia, D., Salvemini, M., Tuccari, G., Mastrodonato, G., Villani, R., & Sperandeo, M. (2023). A review on biological effects of ultrasounds: key messages for clinicians. Diagnostics, 13(5), 855.https://doi.org/10.3390/diagnostics13050855
  28. Rajewska, K., & Mierzwa, D. (2017). Influence of ultrasound on the microstructure of plant tissue. Innovative food science and emerging technologies, 43, 117-129. https://doi.org/10.1016/j.ifset.2017.07.034
  29. Rokhina, E. V., Lens, P., & Virkutyte, J. (2009). Low-frequency ultrasound in biotechnology: state of the art. Trends in biotechnology, 27(5), 298-306.https://doi.org/10.1016/j.tibtech.2009.02.001
  30. Sadowska, K., Andrzejewska, J., Ligocka, A., Korczyk-Szabo, J., & Haban, M. (2023). Bioactive substances and microbiological quality of milk thistle fruits from organic and conventional Farming. Applied Sciences, 13(14), 8536. https://doi.org/10.3390/app13148536
  31. Safari, M., Ghanati, F., Behmanesh, M., Hajnorouzi, A., Nahidian, B., & Mina, G. (2013). Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiologiae Plantarum, 35, 2847-2855. https://doi.org/10.1007/s11738-013-1318-6
  32. Salih, S. M., & Al-Jirjees, R. F. (2023). The multi-drops and cross-sections, efficient methods for establishing cell suspension culture of Cuminum cyminum L. and plant regeneration. Basrah Journal of Agricultural Sciences, 36(2), 47-58. https://doi.org/10.37077/25200860.2023.36.2.04
  33. Tůmová, L., Tůma, J., & Hendrychova, H. (2014). Effect of ultrasound on the isoflavonoid production in Genista tinctoria L. suspension cultures. Pharmacognosy Magazine, 10 (Supplementary 2), S425.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078351/
  34. Yang, H., Gao, J., Yang, A., & Chen, H. (2015). The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food research international, 77, 704-710. https://doi.org/10.1016/j.foodres.2015.01.011
  35. Zhao, H. C., Wu, J., Zheng, L., Zhu, T., Xi, B. S., Wang, B., & Younian, W. (2003). Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids and Surfaces B: Biointerfaces, 29(2-3), 143-147. https://doi.org/10.1016/s0927-7765(02)00184-4
  36. Zhou, P., Graether, S. P., Hu, L., & Zhang, W. (2023). The role of stress proteins in plants under abiotic stress. Frontiers in Plant Science, 14, 1193542. https://doi.org/10.3389/fpls.2023.1193542