Main Article Content

Abstract

The current study aims of the current study is to establish cell suspension cultures of the medicinal plant, cumin Cuminum cyminum L. by the application of multiple drops and cross-section techniques. These methods were used in cultivating cell suspensions and in vitro plant regeneration.  Leaf, stem, hypocotyl and root explants were cultured in Murashige and Skoog (MS) medium containing different concentrations (0.05, 0.5 and 1.0 mg.l-1) of naphthalene acetic acid (NAA) and (0.05, 0.1, 1.0 and 2.0 mg.l-1) benzyl adenine BA for callus production. The results indicated the high response of cumin, as the percentage of callus initiation was 100%.The plant regeneration percentage reached 91.6%. Moreover, a friable callus of hypocotyls was appropriate for initiation of cell suspension culture in MS medium with 0.5mg.l-1 NAA and 1.0 mg.l-1benzyl adenine (BA). The best density for primordial callus formation was 51.0 ×105 cells ml-1 in both multiple-drops and cross-sections embedding methods. Callus that had been produced from multi drops and sectors had the ability for shoot regeneration. This study clarified the efficiency of these techniques in establishing cell suspension culture and shoot regeneration, which could be promising sources for high production of active compounds in cumin plant.

Keywords

Callus Cumin Hypocotyls Medicinal plant Tissue culture

Article Details

How to Cite
Salih , S. M. ., & Al-Jirjees , R. F. . (2023). The Multi-drops and Cross-sections, Efficient Methods for Establishing Cell Suspension Culture of Cuminum cyminum L. and Plant Regeneration. Basrah Journal of Agricultural Sciences, 36(2), 47–58. https://doi.org/10.37077/25200860.2023.36.2.04

References

  1. Annon, A. H., & Abdulrasool, I. J. (2020). Effect of gamma radiation and ethyl methanesulfonate (EMS) on potato salt stress tolerance in vitro. Iraqi Journal of Agricultural Sciences, 51(4), 982-990.
  2. https://doi.org/10.36103/ijas.v51i4.1076
  3. Alasadi, M. H. A., Al-Salhie, K. C. K., & Al-Hummod, S. K. M. (2020). The effect of adding different levels of cumin oil (Cuminum cyminum) to feed on productive and physiological performance of local duck (Anaspater hycous). International Conference on emerging applications in material science and technology: ICEAMST 2020, 2235, 020030.
  4. https://doi.org/10.1063/5.0007483
  5. Allaq, A. A., Sidik, N. J., Abdul-Aziz, A., & Ahmed, I. A. (2020). Cumin (Cuminum cyminum L.): A review of its ethno pharmacology, photochemistry. Biomedical Research and Therapy, 7(9), 4016-4021.
  6. https://doi.org/10.15419/bmrat.v7i9.634
  7. Bastakis, E., Hedtke, B., Klermund, C. Grimm, B., & Schwechheimer, C. (2018). LLM-Domain B-GATA transcription factors play multifaceted roles in controlling greening in Arabidopsis. The Plant Cell, 30(3), 582-599.
  8. https://doi.org/10.1105/tpc.17.00947
  9. Birkenhead, K., & Willmer, C. M. (1986). Some biochemical characteristics of guard cell and mesophyll cell protoplasts from Commelina communis L. Journal of Experimental Botany, 37(174), 119-128.
  10. https://doi.org/10.1093/jxb/37.1.119
  11. Dar, S. A., Nawchoo, I. A., Tyub, S., & Kamili, A. N. (2021). Effect of plant growth regulators on in vitro induction and maintenance of callus from leaf and root explants of Atropa acuminata Royle ex Lindl. Biotechnology Reports, 32, e00688.
  12. https://doi.org/10.1016/j.btre.2021.e00688
  13. Deepak, D., Saran, P., & Choudhary, R. (2014). Regeneration of cumin (Cuminum cyminum L.) plants from callus and establishment of dual culture of host and parasite (Alternaria burnsii). African Journal of. Microbiology Research, 8(43), 3695-3701.
  14. https://doi.org/10.5897/ajmr2013.6594
  15. Efferth, T. (2019). Biotechnology applications of plant callus cultures. Engineering, 5(1), 50-59.
  16. https://doi.org/10.1016/j.eng.2018.11.006
  17. Fehér, A. (2019). Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Frontiers in Plant Science, 10, 3389.
  18. https://doi.org/10.3389/fpls.2019.00536
  19. Ferid, A., Mohammed, A., Khalivulla, S. I., Korivi, M., & Abdul Razab, M. K. A. (2020). Plant cell and callus cultures as an alternative source of bioactive compounds with therapeutic potential against coronavirus disease (COVID-19). IOP Conference Series: Earth and Environmental Science, 596, 012099.
  20. https://doi.org/10.1088/1755-1315/596/1/012099
  21. Guo, G., & Ryong, B. J. (2021). Explant, medium, and plant growth regulator (PGR) affect induction and proliferation of callus in Abies koreana. Forests, 12, 1388.
  22. https://doi.org/10.3390/f12101388
  23. Haida, Z., Syahida, A., Ariff, S. M., Maziah, M., & Hakiman, M. (2019). Factors affecting cell biomass and flavonoid production of Ficus deltoidea var. kunstleri in cell suspension culture system. Scientific Reports, 9(1), 9533.
  24. https://doi.org/10.1038/s41598-019-46042-w
  25. Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. Plant Cell, 25(9), 3159-3173.
  26. https://doi.org/10.1105/tpc.113.116053
  27. Kadhim, Z. K., & Abdulhussein, M. A. (2021). Minimal media strength for in vitro conservation of strawberry (Fragaria ananassa) cultures. Basrah Journal of Agricultural Sciences, 34(2), 1-9.
  28. https://doi.org/10.37077/25200860.2021.34.2.01
  29. Khanpour-Ardestani, N., Sharifi, M., & Behmanesh, M. (2015). Establishment of callus and cell suspension culture of Scrophularia striata Boiss. an in vitro approach for acteoside production. Cytotechnology, 67(3), 475–485.
  30. https://doi.org/10.1007/s10616-014-9705-4
  31. Kazemi, N., Kahrizi, D., & Mansouri, M. (2016). Effects of plant growth regulators and explant on callus induction in Cuminum cymium L. Journal of Genetic Resources, 2, 21-25.
  32. https://doi.org/10.22080/JGR.2016.1477
  33. Korinek, M., Handoussa, H., Tsai, Y. H., Chen, Y. Y., Chen, M. H., Chiou, Z. W., Fang, Y., Chang, F. R., Yen, C. H., & Hsieh, C. F. (2021). Anti-inflammatory and antimicrobial volatile oils: Fennel and cumin inhibit neutrophilic inflammation via regulating calcium and MAPKs. Frontiers in Pharmacology, 12, 674095.
  34. https://doi.org/10.3389/fphar.2021.674095
  35. Lodha, S., & Mawar, R. (2014). Cumin wilt management – a review. Journal of Spices and Aromatic Crops, 23(2), 145-155.
  36. https://updatepublishing.com/journal/index.php/josac/article/view/5054
  37. Mahood, H. E. (2021). Effect of plant growth regulators and explant source on the induction of callus of Dianthus caryophyllus L. Basrah Journal of Agricultural Sciences, 34(2), 100-106.
  38. https://doi.org/10.37077/25200860.2021.34.2.08
  39. Mamdouh, D., & Smetanska, I. (2022). Optimization of callus and cell suspension cultures of Lycium schweinfurthii for improved production of phenolics, flavonoids, and antioxidant activity. Horticulturae, 8, 394.
  40. https://doi.org/10.3390/horticulturae8050394
  41. Miah, P., Mohona, S. B., Rahman, M. M. Subhan, N., Khan, F., Hossain, H., Sharker, S. M., & Alam, M. A. (2021). Supplementation of cumin seed powder prevents oxidative stress, hyperlipidemia and non-alcoholic fatty liver in high fat diet fed rats. Biomedicine Pharmacotherapy, 141, 111908.
  42. https://doi.org/10.1016/j.biopha.2021.111908
  43. Murashige, T., & Skoog, F.(1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 437-497.
  44. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  45. Neumann, K. H., Kumar, A., & Imani, J. (2020). Cell Suspension Cultures. Pp. 61-69. In: Neumann, K. H., Kumar, A., & Imani, J. (Editors). Plant Cell and Tissue Culture – A Tool in Biotechnology Basics and Application. Springer, Cham, 459pp.
  46. https://doi.org/10.1007/978-3-030-49098-0_4
  47. Purohit, S. (2018). Increased morphogenetic competence in Cuminum cyminum L. mediated through micronutrient manipulation. Journal of Medicinal Plants Studies, 6(6), 141–144.
  48. https://www.plantsjournal.com/archives/?year=2018&vol=6&issue=6&part=C&ArticleId=908
  49. Ramchandra, S. S., Bhatt, P. N., & Bhatt, D. P. (2020). Callus induction and establishment of cell suspension culture of cumin (Cuminum cyminum L.) Journal of Plant Sciences, 15, 54-63.
  50. https://doi.org/10.3923/jps.2020.54.63
  51. Setiowati, F., Widoretno, W., Prasetyawan, S., & Lukiati, B. (2022). Enhanced production of organ sulfur bioactive compounds in cell suspension culture of single garlic Allium sativum L. using precursor feeding. Jordan Journal of Biological Sciences, 15(2), 183-191.
  52. https://doi.org/10.54319/jjbs/150204
  53. Singh, R. P., Gangadharappa, H. V., & Mruthunjaya, K. (2017). Cuminum cyminum – A Popular Spice: An Updated Review. Pharmacognosy Journal, 9(3), 292-301.
  54. https://doi.org/10.5530/pj.2017.3.51
  55. Singh, T., Sharma, U., & Agrawal, V. (2020). Isolation and optimization of plumbagin production in root callus of Plumbago zeylanica L. augmented with chitosan and yeast extract. Industrial Crops and Products, 151, 112446.
  56. https://doi.org/10.1016/j.indcrop.2020.112446
  57. Srinivasan, K. (2018). Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects. Food Quality and Safety, 2, 1-16.
  58. https://doi.org/10.1093/fqsafe/fyx031
  59. Tan, S. H., Musa, R., Ariff, A., & Maziah, M. (2010). Effect of plant growth regulators on callus, cell suspension and cell line selection for flavonoid production from pegaga (Centella asiatica L. urban). American Journal of Biochemistry and Biotechnology, 6(4), 284-299.
  60. https://doi.org/10.3844/ajbbsp.2010.284.299
  61. Valizadeh, M., Kazemi Tabar, D. P., & Nematzadeh, G. A. (2007). Effect of plant growth regulators on callus induction and regeneration of cumin (Cuminum cyminum). Asian Journal of Agricultural Research, 1, 17-22.
  62. https://doi.org/10.3923/ajar.2007.17.22
  63. Wai-Leng, L., & Lai-Keng, C. (2004). Establishment of Orthosiphon stamineus cell suspension culture for cell growth. Plant Cell, Tissue and Organ Culture 78, 101-106.
  64. https://doi.org/10.1023/B:TICU.0000022533.83592.37
  65. Woo, H.-A., Ku, S. S., Jie, E. Y., Kim, H., Kim, H.-S., Cho, H. S., Jeong, W.-J., Park, S. U., Min, S. R., & Kim, S. W. (2021). Efficient plant regeneration from embryogenic cell suspension cultures of Euonymus alatus. Scientific Reports, 11(1), 15120.
  66. https://doi.org/10.1038/s41598-021-94597-4