Main Article Content

Abstract

The purpose of this study was the improvement of bacteriocin production due to importance of bacteriocin in biotechnology.  Zeolite was used for the first time in this study to support and improvement of bacteriocin production through the ability to increase the bacterial biomass. Zeolite is a mineral that consists mainly of aluminosilicate. One –hundred eighty isolates belonging to the lactic acid bacteria were obtained from 120 samples of different parts of cauliflower and broccoli .The vegetable samples were taken from different markets in Baghdad city for 3 months. Lactic acid bacteria (LAB) isolates were identified by standard diagnostic methods. Bacteriocin production was detected by measuring the inhibition zone towards indicator pathogenic bacterial isolates. The isolates were screened to determine the most efficient producer which caused the largest inhibition zone and it chosen. The most efficient producer was Leuconostoc carnosum after confirmed identification using the VITEK®2 System. The results showed the maximum bacteriocin production with a specific activity of 1093 AU.mg-1 protein when added 1.5%. The active peptide was purified from the cell-free supernatant of Leuconostoc carnosum in three processes: (1) Ammonium sulfate for precipitation with 40-60% saturation (2) ion-exchange chromatography (3) gel filtration chromatography. The purified carnosin was characterized by determining the molecular weight using SDS PAGE (8KDa) in size .Carnosin had lost antimicrobial activity with different protease treatments (pepsin, trypsin and proteinase K). Carnosin was maintained its activity at 100oC but lost 13% of it at 121oC after 15 min.; Carnosin resistance for changed in PH range of 2.0-11.0, while lost 15% of its activity at pH 12.0. Also the organic solvent, surfactant and metal ion salt do not effect on its activity. The purified carnosin appeared a board range of antimicrobial activity against many pathogenic and food-borne spoilage bacteria such as Escherichia coli, Pseudomonas aeruginosa, salmonella typhi, Listeria monocytogenes and Staphylococcus aureus.

Keywords

Bacteriocin Carnosin Lactic Acid Bacteria Leuconostoc carnosum Zeolite

Article Details

How to Cite
Ibrahim, H. A. ., Khelkal, I. N. ., & Muhsin, Y. M. . (2024). Improvement of Bacteriocin Production by Natural Zeolite and Detection of Antibacterial Activity of Leuconostoc carnosum Purified Carnosin. Basrah Journal of Agricultural Sciences, 37(2), 37–53. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1979

References

  1. Al-Rawi, S. S. M., Salahdin, O.D., Al-Alaq, F. T., Abdulazeem, L., Kzar, M. H., Khattab, E. S., & Naje, A. S. (2023). Antibacterial activity of bacteriocin- isolated from Lactobacillus spp. against some pathogenic bacteria. Journal of Medicinal and Chemical Sciences, 6(4), 702-709. https://doi.org/10.26655/JMCHEMSCI.2023.4.1
  2. Al-fekaiki, D. F., Niamah, A. K., & Al-Sahlany, S. T. G. (2017). Extraction and identification of essential oil from Cinnamomum zeylanicum barks and study the antibacterial activity, Journal of Microbiology and Biotechnology, 7(3), 312-316. https://doi.org/10.15414/jmbfs.2017/18.7.7.312-316
  3. Al-Mashhdany, M. A., & Al-Hadethi, A. A. (2023). Adsorption reaction and kinetics of Zn on zeolite mineral comparing with two calcareous soils. Basrah Journal of Agricultural Sciences, 36(2), 199-214. https://doi.org/10.37077/25200860.2023.36.2.15
  4. Al-Salhi, A. A., Al-Shatty, S. M., Al-Imara, E. A., & Al-Khfaji, Q. J. (2022). A new record of lactic acid bacteria strains from the contents of adult chicken intestines. Basrah Journal of Agricultural Sciences, 35(2), 199-222. https://doi.org/10.37077/25200860.2022.35.2.14
  5. Al-Seraih, A. A., Swadi, W. A., Al-hejjaj, M. Y., Al-Laibai, F. H., & Ghadban, A.K. (2022). Isolation and partial characterization of glycolipopeptide biosurfactant derived from a novel Lactiplantibacillus plantarum L bp_WAM. Basrah Journal of Agricultural Sciences, 35(2), 78-98. https://doi.org/10.37077/25200860.2022.35.2.06
  6. Asenjo, J. A., & Andrews, B. A. (2009). Protein Purification using Chromatography: Selection of type, modeling and optimization of operating conditions, Journal of Molecular Recognition, 22(2), 65-76. https://doi.org/10.1002/jmr.898
  7. Banerjee, G., Nandi, A., & Ray, A. K. (2016). Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Archives of Microbiology, 199, 115–124. https://doi.org/10.1007/s00203-016-1283-8
  8. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
  9. Budde, B. B., Hornbæk, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. International Journal of Food Microbiology, 83, 171–184. https://doi.org/10.1016/s0168-1605(02)00364-1
  10. Campbell, L. S., Charnock, J., Dyer, A., Hillier, S., Chenery, S., Stoppa, F., Henderson, C. M. B., Walcott, R., & Rumsey, M. (2016). Determination of zeolite-group mineral compositions by electron probe microanalysis. Mineralogical Magazine, 80(5), 781-807. https://doi.org/10.1180/minmag.2016.080.044
  11. Candeliere, F., Raimondi, S., Spampinato, G., Tay, M. Y. F., Amaretti, A., Schlundt, J., & Rossi, M. (2021). Comparative genomics of Leuconostoc carnosum. Frontiers in Microbiology, 11, 605127. https://doi.org/10.3389/fmicb.2020.605127
  12. Choeisoongnern, T., Sivamaruthi, B. S., Sirilun, S., Peerajan, S., Choiset, Y., Rabesona, H., Haertle, T., & Chaiyasut, C. (2020). Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products, Food Science and Technology (Campinas), 40(3), 571-579. https://doi.org/10.1590/fst.13219
  13. Cui, G., Panb, C., Xua, P., Lia, Y., Wanga, L., Gonga, B., Lic, X., & Huanga, S. (2020). Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis CG-9 from human saliva, Biotechnology & Biotechnological Equipment, 34(1), 1224–1233. https://doi.org/10.1080/13102818.2020.1830714
  14. Djadouni, F., & Mebrouk, K. (2013). Characterization and determination of the factors affecting anti-listerial bacteriocins from Lactobacillus plantarum and Pediococcus pentosaceus isolated from dairy milk products, African Journal of Food Science, 7(3), 35–44. https://doi.org/10.5897/AJFS12.037
  15. Dündar, H. (2006). Characterization and purification of a bacteriocin produced by Leuconostoc mesenteroides subsp. cremoris. Ph.D. Thesis. Middle East Technical University, 195pp. https://open.metu.edu.tr/handle/11511/16559
  16. Eijsink, V. G., Axelsson, L., Diep, D. B., Håvarstein, L. S., Holo, H., & Nes, I. F. (2002). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Leeuwenhoek, 81(1-4), 639-654. https://doi.org/10.1023/A:1020582211262
  17. Fathi, F., Kasra-Kermanshahi, R., Moosavi-Nejad, Z., & Qamsari, E. M. (2021). Partial purification, characterization and immobilization of a novel lipase from a native isolate of Lactobacillus fermentum, Iranian Journal of Microbiology, 13(6), 871-877. https://ijm.tums.ac.ir/index.php/ijm/article/view/3339
  18. Gabrielsen, C., Brede, D. A., Nes, I. F., & Diep, D. B. (2014). Circular bacteriocins: biosynthesis and mode of action. Applied and Environmental Microbiology, 80(22), 6854-6862. https://doi.org/10.1128/AEM.02284-14
  19. Hong, S. W., Kim, J., Cha, H. A., Chung, K. S., Bae, H. J., Park, W. S., Ham, J., Park, B., & Oh, M. (2022). Identification and characterization of a bacteriocin from the newly isolated Bacillus subtilis HD15 with inhibitory effects against Bacillus cereus. Journal of Microbiology and Biotechnology, 32(11), 1462–1470. https://doi.org/10.4014/jmb.2208.08006
  20. Ibrahim, F., Siddiqui, N., Aman, A., Qader, S., & Ansari, A. (2020). Characterization, cytotoxic analysis and action mechanism of antilisterial bacteriocin produced by Lactobacillus plantarum isolated from cheddar cheese. International Journal of Peptide Research and Therapeutics, 26, 1751–1764. https://doi.org/10.1007/s10989-019-09982-5
  21. Ivanova, I., Kabadjova, P., Pantev, A., Danova, S., & Dousse, X. (2000). Detection, purification and characterization of a novel bacteriocin substance produced by Lactobacillus lactis subsp. lactis B14 isolated from boza-bulgarian traditional cereals beverage. Biocatalysis - Fundamental and Application, 41, 47-53.https://www.semanticscholar.org/paper/DETECTION%2C-PURIFICATION-AND-PARTIAL-OF-A-NOVEL-BY-Ivanova-Kabadjova/9b4d80b342d104aa6f5b727055cf2016873a5222
  22. Junnarkar, M., Pawar, S., Gaikwad, S., Mandal, A., Jass, J., & Nawani, N. (2019). Probiotic potential of lactic acid bacteria from fresh vegetables: Application in food preservation. Indian Journal of Experimental Biology, 57, 825-838. http://nopr.niscpr.res.in/handle/123456789/51174
  23. Jung, G., & Sahl, H. G. (1991). Lantibiotics: A survey. Pp: 1-34. In: Jung, G., & Sahl, H. G., (Eds.). Nisin and novel lantibiotics. ESCOM Science, Springer Dordrecht, 490pp. https://link.springer.com/book/9789072199119
  24. Khelkal, I. N. (2016). Comparison the Antibacterial activity of vitamin D2 and D3 Al-Mustansiriyah Journal of Science, 27(4), 1-7. https://mjs.uomustansiriyah.edu.iq/index.php/MJS/article/view/16
  25. Kotsopoulos, T. A., Karamanlis, X., Dotas, D., & Martzopoulos G. G. (2008). The impact of diferent natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosystems Engineering, 99(1), 105-111. https://doi.org/10.1016/j.biosystemseng.2007.09.018
  26. Lahiri, D., Chakraborti, S., Jasu, A., Nag, M., Dutta, B., Dash, S., & Ray, R. R. (2020).Production and purification of bacteriocin from Leuconostoc lactis SM 2 strain, Biocatalysis and Agricultural Biotechnology, 30. 101845. https://doi.org/10.1016/j.bcab.2020.101845
  27. Mahdi, L. H. (2017). Immunomodulatory of Bifidobacterium breve and inhibitory effect of bifidobrevicin-LHM ON Streptococcus agalactiae and its β-hemolysin Iraqi Journal of Agricultural Science, 48(Special Issue), 156-170. https://doi.org/10.36103/ijas.v48iSpecial.257
  28. Maurya, A. P., & Thakur, R. L. (2012). Inhibition spectrum, purification and characterization of bacteriocin from Leuconostoc NT-1. Current Science, 103(12), 1405-1407.http://www.jstor.org/stable/24089346
  29. Maqueda, M., Gálvez, A., Bueno, M. M., Sanchez-Barrena, M. J., González, C., Albert, A., Rico, M., & Valdivia, E. (2004).Peptide AS-48: prototype of a new class of cyclic bacteriocins. Current Protein and Peptide Science, 5(5), 399-416.https://doi.org/10.2174/1389203043379567
  30. Moghaddam, S. A. E., Harun, R., Mokhtar, M. N., & Zakaria, R. (2018). Potential of zeolite and algae in biomass immobilization. BioMed Research International, 2018, Article ID 6563196, 15pp. https://doi.org/10.1155/2018/6563196
  31. Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E., & Herrmann,C. (2020). Application of zeolites for biological treatment processes of solid wastes and wastewaters—a review. Bioresource Technology, 301, 122808. https://doi.org/10.1016/j.biortech.2020.122808
  32. Mühlbachová, G., & Šimon, T. (2003). Effects of zeolite amendment on microbial biomass and respiratory activity in heavy metal contaminated soils. Plant Soil Environmental, 49(12), 536–541. https://doi.org/10.17221/4190-PSE
  33. Niamah, A. K. (2018). Structure, mode of action and application of pediocin natural antimicrobial food preservative: A review, Basrah Journal of Agricultural Sciences, 31(1), 59-69. https://doi.org/10.33762/bagrs.2018.160126
  34. Nilsen, T., Nes, I. F., & Holo, H. (2003). Enterolysin A, a cell wall-degradingbacteriocin from Enterococcus faecalis LMG 2333. Applied and Environmental Microbiology, 69(5), 2975-2984. https://doi.org/10.1128/AEM.69.5.2975-2984.2003
  35. Otunba, A. A., Osuntoki, A. A., Olukoya, D. K., & Babalola, B. A. (2021). Genomic, biochemical and microbial evaluation of probiotic potentials of bacterial isolates from fermented sorghum products. Heliyon, 7(12), E08536. https://doi.org/10.1016/j.heliyon.2021.e08536
  36. Otunba, A. A., Osuntoki, A. A., Okunowo, W., Olukoya, D. K., & Babalola, B. A. (2022). Characterization of novel bacteriocin PB2 and comprehensive detection of the pediocin gene ped-A1 from Pediococcus pentosaceus PB2 strain isolated from a sorghum-based fermented beverage in Nigeria. Biotechnology Reports, 36, e00772.https://doi.org/10.1016/j.btre.2022.e00772
  37. Parente, E., Brienza, C., Moles, M., & Ricciardi, A. (1995). A comparison of methods for the measurement of bacteriocin activity. Journal of Microbiological Methods, 22, 95-108. https://doi.org/10.1016/0167-7012(94)00068-I
  38. Patel, A., Shah, N., & Verma, D. K. (2017). Lactic acid bacteria (LAB) bacteriocins: Anecological and sustainable biopreservative approach to improve the safety and shelf life of foods. Pp. 197–258. In Verma, D. K. & Srivastav, P. P. (Eds.), Microorganisms in sustainable agriculture, food and the environment, Apple Academic Press. 452pp. https://doi.org/10.1201/9781315365824
  39. Perumal, V., & Venkatesan, A. (2017). Antimicrobial, cytotoxic effect and purification of bacteriocin from vancomycin susceptible Enterococcus faecalis and its safety evaluation for probiotization. Lebensmittel-Wissenschaft & Technologie, 78(1), 303–310. https://doi.org/10.1016/j.lwt.2016.12.048
  40. Qiao, X., Du, R., Wang, Y., Han, Y., & Zhou, Z. (2020). Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. International Journal of Biological Macromolecules, 144, 151-159. https://doi.org/10.1016/j.ijbiomac.2019.12.090
  41. Raimondi, S., Spampinato, G., Candeliere, F., Amaretti, A., Brun, P., Castagliuolo, I., & Rossi, M. (2021). Phenotypic traits and immunomodulatory properties of Leuconostoc carnosum isolated from meat products. Science Food Microbiology, 12, 730827. https://doi.org/10.3389/fmicb.2021.730827
  42. Rasheed, H. T., Khalid, J. K., & Alaubydi, L. M. A. (2020). Purification and characterization of bacteriocin from Lactobacillus acidophilus HT1 and its application in a cream formula for the treatment of some skin pathogen. Iraqi Journal of Agricultural Sciences, 51(5), 1381-1393. https://doi.org/10.36103/ijas.v51i5.1148
  43. Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Review in Food Science, and Nutrition, 42(2), 91-121. https://doi.org/10.1080/10408690290825475
  44. Roy, V. K., Kumar, N. S., & Gurusubramanian, G. (2012). Proteins – structure, properties and their separation by SDS polyacrylamide gel electrophoresis. Science Vision, 12(4), 170-181.https://www.sciencevision.org/issue/29/article/192
  45. Sanam, M. U., Detha, A. I., & Rohi, N. K. (2022). Detection of antibacterial activity of lactic acid bacteria, isolated from Sumba mare’s milk, against Bacillus cereus, Staphylococcus aureus, and Escherichia coli. Journal of Advanced Veterinary and Animal Research, 9(1), 53-58.https://doi.org/10.5455/javar.2022.i568
  46. Senila, L., Hoaghia, A., Moldovan, A., Török, I. A., Kovacs, D., Simedru, D., Tomoiag, C. H., & Senila, M. (2022). The potential application of natural clinoptilolite-rich zeolite as support for bacterial community formation for wastewater treatment, Materials, 15, 3685. https://doi.org/10.3390/ma15103685
  47. Silva, S. P., Ribeiro, S. C., Teixeira, J. A., & Silva, C. C. (2022). Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation, LWT, 153, 112486. https://doi.org/10.1016/j.lwt.2021.112486
  48. Silva, R. M., Abreu, A. A., Salvador, A. F., Alves, M. M., Neves, I. C., & Pereira, M. A. (2021). Zeolite addition to improve biohydrogen production from dark fermentation of C5/C6 sugars and Sargassum sp. Biomass. Scientific Reports, 11, 16350. https://doi.org/10.1038/s41598-021-95615-
  49. Stiles, M. E. (1994). Bacteriocins produced by Leuconostoc species. Journal of Dairy Science, 77(9), 2718-2724. https://doi.org/10.3168/jds.S0022-0302(94)77214-3
  50. Taher, N. A. (2016). Antimicrobial effect of bacteriocin produced Pediococcus pentosaceus on some clinical isolates. Al-Mustansiriyah Journal of Science, 27(5), 2521-3520. https://doi.org/10.23851/mjs.v27i5.163
  51. Tekeşoğlu, H., & Ergün, S. (2021). Effects of Dietary Natural Zeolite (Clinoptilolite) on Growth and Some Blood Parameters of Rainbow Trout (Onchorynchus mykiss, Walbaum 1792). Acta Aquatica Turcica, 17(1), 119-128. https://doi.org/10.22392/actaquatr.765667
  52. Todorov, S. D., De Melo Franco, B. D. G., & Tagg, J. R. (2019). Bacteriocins of gram-positive bacteria having activity spectra extending beyond closely-related species. Beneficial Microbes, 10(3), 315-328. https://doi.org/10.3920/BM2018.0126
  53. Tönz, A., Leischtfeld, S. F., Stevens, M. J. A., Glinski-Häfeli, D., Ladner, V., Gantenbein-Demarchi, C., & Schwenninger, S. M. (2024). Growth control of Listeria monocytogenes in raw sausage via bacteriocin-producing Leuconostoc carnosum DH25. Foods, 13(2), 298.https://doi.org/10.3390/foods13020298
  54. Vasconcelos, A. A., Len, T., de Oliveira, A. N., Costa, A.A.F., Souza, A. R. S., Costa, C.E.F., Luque, R., do Rocha Filho, G. N., Noronha, R.C.R., & do Nascimento, L. A. S. (2023). Zeolites: A Theoretical and Practical Approach with Uses in (Bio) Chemical Processes. Journal of Applied Sciences, 13, 1897.https://doi.org/10.3390/app13031897
  55. Verma, D. K., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., Baranwal, D., Patel, A.R., Shah, N., Utama, G. L., Niamah, A. K., Chávez-González, M. L., Gallegos, C. F., Aguilar, C. N., & Srivastav, P. P. (2022). Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience, 46, 101594. https://doi.org/10.1016/j.fbio.2022.101594
  56. Walker, J. M. (2009). The Protein Protocols Handbook. Third Edition. Springer-Verlag New York, LLC. https://www.amazon.com/Protein-Protocols-Handbook-Springer-Handbooks/dp/160327474X
  57. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, 612285. https://doi.org/10.3389/fbioe.2021.612285
  58. Whitaker, J. R. (1994). Principles of Enzymology for the Food Science. INC2nd edition. New York. 648pp. https://doi.org/10.1201/9780203742136
  59. Yildirim, Z., Ilk, Y., Yildirim, M., Tokatli, K., & Öncül, N. (2014). Inhibitory effect of enterocin KP in combination with sub lethal factors on Escherichia coli O157: H7 or Salmonella Typhimurium in BHI broth and UHT milk. Turkish Journal of Biology. 38(3), 412-419. https://doi.org/10.3906/biy-1310-69
  60. Zhou, K., Zhou, W., Li, P., Liu, G., Zhang, J., & Dai, Y. (2008) Mode of action of pentocin 31-1: an antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control, 19(8), 817-822. https://doi.org/10.1016/j.foodcont.2007.08.008
  61. Zhu, Y., Huang, W. E., &Yang, Q. (2022). Clinical perspective of antimicrobial resistance in bacteria. The opinion on recent clinic antibiotics abuse. Infection and Drug Resistance, 15, 735-746. https://doi.org/10.2147/IDR.S345574