Main Article Content
Abstract
The purpose of this study was the improvement of bacteriocin production due to importance of bacteriocin in biotechnology. Zeolite was used for the first time in this study to support and improvement of bacteriocin production through the ability to increase the bacterial biomass. Zeolite is a mineral that consists mainly of aluminosilicate. One –hundred eighty isolates belonging to the lactic acid bacteria were obtained from 120 samples of different parts of cauliflower and broccoli .The vegetable samples were taken from different markets in Baghdad city for 3 months. Lactic acid bacteria (LAB) isolates were identified by standard diagnostic methods. Bacteriocin production was detected by measuring the inhibition zone towards indicator pathogenic bacterial isolates. The isolates were screened to determine the most efficient producer which caused the largest inhibition zone and it chosen. The most efficient producer was Leuconostoc carnosum after confirmed identification using the VITEK®2 System. The results showed the maximum bacteriocin production with a specific activity of 1093 AU.mg-1 protein when added 1.5%. The active peptide was purified from the cell-free supernatant of Leuconostoc carnosum in three processes: (1) Ammonium sulfate for precipitation with 40-60% saturation (2) ion-exchange chromatography (3) gel filtration chromatography. The purified carnosin was characterized by determining the molecular weight using SDS PAGE (8KDa) in size .Carnosin had lost antimicrobial activity with different protease treatments (pepsin, trypsin and proteinase K). Carnosin was maintained its activity at 100oC but lost 13% of it at 121oC after 15 min.; Carnosin resistance for changed in PH range of 2.0-11.0, while lost 15% of its activity at pH 12.0. Also the organic solvent, surfactant and metal ion salt do not effect on its activity. The purified carnosin appeared a board range of antimicrobial activity against many pathogenic and food-borne spoilage bacteria such as Escherichia coli, Pseudomonas aeruginosa, salmonella typhi, Listeria monocytogenes and Staphylococcus aureus.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Al-Rawi, S. S. M., Salahdin, O.D., Al-Alaq, F. T., Abdulazeem, L., Kzar, M. H., Khattab, E. S., & Naje, A. S. (2023). Antibacterial activity of bacteriocin- isolated from Lactobacillus spp. against some pathogenic bacteria. Journal of Medicinal and Chemical Sciences, 6(4), 702-709. https://doi.org/10.26655/JMCHEMSCI.2023.4.1
- Al-fekaiki, D. F., Niamah, A. K., & Al-Sahlany, S. T. G. (2017). Extraction and identification of essential oil from Cinnamomum zeylanicum barks and study the antibacterial activity, Journal of Microbiology and Biotechnology, 7(3), 312-316. https://doi.org/10.15414/jmbfs.2017/18.7.7.312-316
- Al-Mashhdany, M. A., & Al-Hadethi, A. A. (2023). Adsorption reaction and kinetics of Zn on zeolite mineral comparing with two calcareous soils. Basrah Journal of Agricultural Sciences, 36(2), 199-214. https://doi.org/10.37077/25200860.2023.36.2.15
- Al-Salhi, A. A., Al-Shatty, S. M., Al-Imara, E. A., & Al-Khfaji, Q. J. (2022). A new record of lactic acid bacteria strains from the contents of adult chicken intestines. Basrah Journal of Agricultural Sciences, 35(2), 199-222. https://doi.org/10.37077/25200860.2022.35.2.14
- Al-Seraih, A. A., Swadi, W. A., Al-hejjaj, M. Y., Al-Laibai, F. H., & Ghadban, A.K. (2022). Isolation and partial characterization of glycolipopeptide biosurfactant derived from a novel Lactiplantibacillus plantarum L bp_WAM. Basrah Journal of Agricultural Sciences, 35(2), 78-98. https://doi.org/10.37077/25200860.2022.35.2.06
- Asenjo, J. A., & Andrews, B. A. (2009). Protein Purification using Chromatography: Selection of type, modeling and optimization of operating conditions, Journal of Molecular Recognition, 22(2), 65-76. https://doi.org/10.1002/jmr.898
- Banerjee, G., Nandi, A., & Ray, A. K. (2016). Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Archives of Microbiology, 199, 115–124. https://doi.org/10.1007/s00203-016-1283-8
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
- Budde, B. B., Hornbæk, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. International Journal of Food Microbiology, 83, 171–184. https://doi.org/10.1016/s0168-1605(02)00364-1
- Campbell, L. S., Charnock, J., Dyer, A., Hillier, S., Chenery, S., Stoppa, F., Henderson, C. M. B., Walcott, R., & Rumsey, M. (2016). Determination of zeolite-group mineral compositions by electron probe microanalysis. Mineralogical Magazine, 80(5), 781-807. https://doi.org/10.1180/minmag.2016.080.044
- Candeliere, F., Raimondi, S., Spampinato, G., Tay, M. Y. F., Amaretti, A., Schlundt, J., & Rossi, M. (2021). Comparative genomics of Leuconostoc carnosum. Frontiers in Microbiology, 11, 605127. https://doi.org/10.3389/fmicb.2020.605127
- Choeisoongnern, T., Sivamaruthi, B. S., Sirilun, S., Peerajan, S., Choiset, Y., Rabesona, H., Haertle, T., & Chaiyasut, C. (2020). Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products, Food Science and Technology (Campinas), 40(3), 571-579. https://doi.org/10.1590/fst.13219
- Cui, G., Panb, C., Xua, P., Lia, Y., Wanga, L., Gonga, B., Lic, X., & Huanga, S. (2020). Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis CG-9 from human saliva, Biotechnology & Biotechnological Equipment, 34(1), 1224–1233. https://doi.org/10.1080/13102818.2020.1830714
- Djadouni, F., & Mebrouk, K. (2013). Characterization and determination of the factors affecting anti-listerial bacteriocins from Lactobacillus plantarum and Pediococcus pentosaceus isolated from dairy milk products, African Journal of Food Science, 7(3), 35–44. https://doi.org/10.5897/AJFS12.037
- Dündar, H. (2006). Characterization and purification of a bacteriocin produced by Leuconostoc mesenteroides subsp. cremoris. Ph.D. Thesis. Middle East Technical University, 195pp. https://open.metu.edu.tr/handle/11511/16559
- Eijsink, V. G., Axelsson, L., Diep, D. B., Håvarstein, L. S., Holo, H., & Nes, I. F. (2002). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Leeuwenhoek, 81(1-4), 639-654. https://doi.org/10.1023/A:1020582211262
- Fathi, F., Kasra-Kermanshahi, R., Moosavi-Nejad, Z., & Qamsari, E. M. (2021). Partial purification, characterization and immobilization of a novel lipase from a native isolate of Lactobacillus fermentum, Iranian Journal of Microbiology, 13(6), 871-877. https://ijm.tums.ac.ir/index.php/ijm/article/view/3339
- Gabrielsen, C., Brede, D. A., Nes, I. F., & Diep, D. B. (2014). Circular bacteriocins: biosynthesis and mode of action. Applied and Environmental Microbiology, 80(22), 6854-6862. https://doi.org/10.1128/AEM.02284-14
- Hong, S. W., Kim, J., Cha, H. A., Chung, K. S., Bae, H. J., Park, W. S., Ham, J., Park, B., & Oh, M. (2022). Identification and characterization of a bacteriocin from the newly isolated Bacillus subtilis HD15 with inhibitory effects against Bacillus cereus. Journal of Microbiology and Biotechnology, 32(11), 1462–1470. https://doi.org/10.4014/jmb.2208.08006
- Ibrahim, F., Siddiqui, N., Aman, A., Qader, S., & Ansari, A. (2020). Characterization, cytotoxic analysis and action mechanism of antilisterial bacteriocin produced by Lactobacillus plantarum isolated from cheddar cheese. International Journal of Peptide Research and Therapeutics, 26, 1751–1764. https://doi.org/10.1007/s10989-019-09982-5
- Ivanova, I., Kabadjova, P., Pantev, A., Danova, S., & Dousse, X. (2000). Detection, purification and characterization of a novel bacteriocin substance produced by Lactobacillus lactis subsp. lactis B14 isolated from boza-bulgarian traditional cereals beverage. Biocatalysis - Fundamental and Application, 41, 47-53.https://www.semanticscholar.org/paper/DETECTION%2C-PURIFICATION-AND-PARTIAL-OF-A-NOVEL-BY-Ivanova-Kabadjova/9b4d80b342d104aa6f5b727055cf2016873a5222
- Junnarkar, M., Pawar, S., Gaikwad, S., Mandal, A., Jass, J., & Nawani, N. (2019). Probiotic potential of lactic acid bacteria from fresh vegetables: Application in food preservation. Indian Journal of Experimental Biology, 57, 825-838. http://nopr.niscpr.res.in/handle/123456789/51174
- Jung, G., & Sahl, H. G. (1991). Lantibiotics: A survey. Pp: 1-34. In: Jung, G., & Sahl, H. G., (Eds.). Nisin and novel lantibiotics. ESCOM Science, Springer Dordrecht, 490pp. https://link.springer.com/book/9789072199119
- Khelkal, I. N. (2016). Comparison the Antibacterial activity of vitamin D2 and D3 Al-Mustansiriyah Journal of Science, 27(4), 1-7. https://mjs.uomustansiriyah.edu.iq/index.php/MJS/article/view/16
- Kotsopoulos, T. A., Karamanlis, X., Dotas, D., & Martzopoulos G. G. (2008). The impact of diferent natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosystems Engineering, 99(1), 105-111. https://doi.org/10.1016/j.biosystemseng.2007.09.018
- Lahiri, D., Chakraborti, S., Jasu, A., Nag, M., Dutta, B., Dash, S., & Ray, R. R. (2020).Production and purification of bacteriocin from Leuconostoc lactis SM 2 strain, Biocatalysis and Agricultural Biotechnology, 30. 101845. https://doi.org/10.1016/j.bcab.2020.101845
- Mahdi, L. H. (2017). Immunomodulatory of Bifidobacterium breve and inhibitory effect of bifidobrevicin-LHM ON Streptococcus agalactiae and its β-hemolysin Iraqi Journal of Agricultural Science, 48(Special Issue), 156-170. https://doi.org/10.36103/ijas.v48iSpecial.257
- Maurya, A. P., & Thakur, R. L. (2012). Inhibition spectrum, purification and characterization of bacteriocin from Leuconostoc NT-1. Current Science, 103(12), 1405-1407.http://www.jstor.org/stable/24089346
- Maqueda, M., Gálvez, A., Bueno, M. M., Sanchez-Barrena, M. J., González, C., Albert, A., Rico, M., & Valdivia, E. (2004).Peptide AS-48: prototype of a new class of cyclic bacteriocins. Current Protein and Peptide Science, 5(5), 399-416.https://doi.org/10.2174/1389203043379567
- Moghaddam, S. A. E., Harun, R., Mokhtar, M. N., & Zakaria, R. (2018). Potential of zeolite and algae in biomass immobilization. BioMed Research International, 2018, Article ID 6563196, 15pp. https://doi.org/10.1155/2018/6563196
- Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E., & Herrmann,C. (2020). Application of zeolites for biological treatment processes of solid wastes and wastewaters—a review. Bioresource Technology, 301, 122808. https://doi.org/10.1016/j.biortech.2020.122808
- Mühlbachová, G., & Šimon, T. (2003). Effects of zeolite amendment on microbial biomass and respiratory activity in heavy metal contaminated soils. Plant Soil Environmental, 49(12), 536–541. https://doi.org/10.17221/4190-PSE
- Niamah, A. K. (2018). Structure, mode of action and application of pediocin natural antimicrobial food preservative: A review, Basrah Journal of Agricultural Sciences, 31(1), 59-69. https://doi.org/10.33762/bagrs.2018.160126
- Nilsen, T., Nes, I. F., & Holo, H. (2003). Enterolysin A, a cell wall-degradingbacteriocin from Enterococcus faecalis LMG 2333. Applied and Environmental Microbiology, 69(5), 2975-2984. https://doi.org/10.1128/AEM.69.5.2975-2984.2003
- Otunba, A. A., Osuntoki, A. A., Olukoya, D. K., & Babalola, B. A. (2021). Genomic, biochemical and microbial evaluation of probiotic potentials of bacterial isolates from fermented sorghum products. Heliyon, 7(12), E08536. https://doi.org/10.1016/j.heliyon.2021.e08536
- Otunba, A. A., Osuntoki, A. A., Okunowo, W., Olukoya, D. K., & Babalola, B. A. (2022). Characterization of novel bacteriocin PB2 and comprehensive detection of the pediocin gene ped-A1 from Pediococcus pentosaceus PB2 strain isolated from a sorghum-based fermented beverage in Nigeria. Biotechnology Reports, 36, e00772.https://doi.org/10.1016/j.btre.2022.e00772
- Parente, E., Brienza, C., Moles, M., & Ricciardi, A. (1995). A comparison of methods for the measurement of bacteriocin activity. Journal of Microbiological Methods, 22, 95-108. https://doi.org/10.1016/0167-7012(94)00068-I
- Patel, A., Shah, N., & Verma, D. K. (2017). Lactic acid bacteria (LAB) bacteriocins: Anecological and sustainable biopreservative approach to improve the safety and shelf life of foods. Pp. 197–258. In Verma, D. K. & Srivastav, P. P. (Eds.), Microorganisms in sustainable agriculture, food and the environment, Apple Academic Press. 452pp. https://doi.org/10.1201/9781315365824
- Perumal, V., & Venkatesan, A. (2017). Antimicrobial, cytotoxic effect and purification of bacteriocin from vancomycin susceptible Enterococcus faecalis and its safety evaluation for probiotization. Lebensmittel-Wissenschaft & Technologie, 78(1), 303–310. https://doi.org/10.1016/j.lwt.2016.12.048
- Qiao, X., Du, R., Wang, Y., Han, Y., & Zhou, Z. (2020). Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. International Journal of Biological Macromolecules, 144, 151-159. https://doi.org/10.1016/j.ijbiomac.2019.12.090
- Raimondi, S., Spampinato, G., Candeliere, F., Amaretti, A., Brun, P., Castagliuolo, I., & Rossi, M. (2021). Phenotypic traits and immunomodulatory properties of Leuconostoc carnosum isolated from meat products. Science Food Microbiology, 12, 730827. https://doi.org/10.3389/fmicb.2021.730827
- Rasheed, H. T., Khalid, J. K., & Alaubydi, L. M. A. (2020). Purification and characterization of bacteriocin from Lactobacillus acidophilus HT1 and its application in a cream formula for the treatment of some skin pathogen. Iraqi Journal of Agricultural Sciences, 51(5), 1381-1393. https://doi.org/10.36103/ijas.v51i5.1148
- Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Review in Food Science, and Nutrition, 42(2), 91-121. https://doi.org/10.1080/10408690290825475
- Roy, V. K., Kumar, N. S., & Gurusubramanian, G. (2012). Proteins – structure, properties and their separation by SDS polyacrylamide gel electrophoresis. Science Vision, 12(4), 170-181.https://www.sciencevision.org/issue/29/article/192
- Sanam, M. U., Detha, A. I., & Rohi, N. K. (2022). Detection of antibacterial activity of lactic acid bacteria, isolated from Sumba mare’s milk, against Bacillus cereus, Staphylococcus aureus, and Escherichia coli. Journal of Advanced Veterinary and Animal Research, 9(1), 53-58.https://doi.org/10.5455/javar.2022.i568
- Senila, L., Hoaghia, A., Moldovan, A., Török, I. A., Kovacs, D., Simedru, D., Tomoiag, C. H., & Senila, M. (2022). The potential application of natural clinoptilolite-rich zeolite as support for bacterial community formation for wastewater treatment, Materials, 15, 3685. https://doi.org/10.3390/ma15103685
- Silva, S. P., Ribeiro, S. C., Teixeira, J. A., & Silva, C. C. (2022). Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation, LWT, 153, 112486. https://doi.org/10.1016/j.lwt.2021.112486
- Silva, R. M., Abreu, A. A., Salvador, A. F., Alves, M. M., Neves, I. C., & Pereira, M. A. (2021). Zeolite addition to improve biohydrogen production from dark fermentation of C5/C6 sugars and Sargassum sp. Biomass. Scientific Reports, 11, 16350. https://doi.org/10.1038/s41598-021-95615-
- Stiles, M. E. (1994). Bacteriocins produced by Leuconostoc species. Journal of Dairy Science, 77(9), 2718-2724. https://doi.org/10.3168/jds.S0022-0302(94)77214-3
- Taher, N. A. (2016). Antimicrobial effect of bacteriocin produced Pediococcus pentosaceus on some clinical isolates. Al-Mustansiriyah Journal of Science, 27(5), 2521-3520. https://doi.org/10.23851/mjs.v27i5.163
- Tekeşoğlu, H., & Ergün, S. (2021). Effects of Dietary Natural Zeolite (Clinoptilolite) on Growth and Some Blood Parameters of Rainbow Trout (Onchorynchus mykiss, Walbaum 1792). Acta Aquatica Turcica, 17(1), 119-128. https://doi.org/10.22392/actaquatr.765667
- Todorov, S. D., De Melo Franco, B. D. G., & Tagg, J. R. (2019). Bacteriocins of gram-positive bacteria having activity spectra extending beyond closely-related species. Beneficial Microbes, 10(3), 315-328. https://doi.org/10.3920/BM2018.0126
- Tönz, A., Leischtfeld, S. F., Stevens, M. J. A., Glinski-Häfeli, D., Ladner, V., Gantenbein-Demarchi, C., & Schwenninger, S. M. (2024). Growth control of Listeria monocytogenes in raw sausage via bacteriocin-producing Leuconostoc carnosum DH25. Foods, 13(2), 298.https://doi.org/10.3390/foods13020298
- Vasconcelos, A. A., Len, T., de Oliveira, A. N., Costa, A.A.F., Souza, A. R. S., Costa, C.E.F., Luque, R., do Rocha Filho, G. N., Noronha, R.C.R., & do Nascimento, L. A. S. (2023). Zeolites: A Theoretical and Practical Approach with Uses in (Bio) Chemical Processes. Journal of Applied Sciences, 13, 1897.https://doi.org/10.3390/app13031897
- Verma, D. K., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., Baranwal, D., Patel, A.R., Shah, N., Utama, G. L., Niamah, A. K., Chávez-González, M. L., Gallegos, C. F., Aguilar, C. N., & Srivastav, P. P. (2022). Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience, 46, 101594. https://doi.org/10.1016/j.fbio.2022.101594
- Walker, J. M. (2009). The Protein Protocols Handbook. Third Edition. Springer-Verlag New York, LLC. https://www.amazon.com/Protein-Protocols-Handbook-Springer-Handbooks/dp/160327474X
- Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, 612285. https://doi.org/10.3389/fbioe.2021.612285
- Whitaker, J. R. (1994). Principles of Enzymology for the Food Science. INC2nd edition. New York. 648pp. https://doi.org/10.1201/9780203742136
- Yildirim, Z., Ilk, Y., Yildirim, M., Tokatli, K., & Öncül, N. (2014). Inhibitory effect of enterocin KP in combination with sub lethal factors on Escherichia coli O157: H7 or Salmonella Typhimurium in BHI broth and UHT milk. Turkish Journal of Biology. 38(3), 412-419. https://doi.org/10.3906/biy-1310-69
- Zhou, K., Zhou, W., Li, P., Liu, G., Zhang, J., & Dai, Y. (2008) Mode of action of pentocin 31-1: an antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control, 19(8), 817-822. https://doi.org/10.1016/j.foodcont.2007.08.008
- Zhu, Y., Huang, W. E., &Yang, Q. (2022). Clinical perspective of antimicrobial resistance in bacteria. The opinion on recent clinic antibiotics abuse. Infection and Drug Resistance, 15, 735-746. https://doi.org/10.2147/IDR.S345574
References
Al-Rawi, S. S. M., Salahdin, O.D., Al-Alaq, F. T., Abdulazeem, L., Kzar, M. H., Khattab, E. S., & Naje, A. S. (2023). Antibacterial activity of bacteriocin- isolated from Lactobacillus spp. against some pathogenic bacteria. Journal of Medicinal and Chemical Sciences, 6(4), 702-709. https://doi.org/10.26655/JMCHEMSCI.2023.4.1
Al-fekaiki, D. F., Niamah, A. K., & Al-Sahlany, S. T. G. (2017). Extraction and identification of essential oil from Cinnamomum zeylanicum barks and study the antibacterial activity, Journal of Microbiology and Biotechnology, 7(3), 312-316. https://doi.org/10.15414/jmbfs.2017/18.7.7.312-316
Al-Mashhdany, M. A., & Al-Hadethi, A. A. (2023). Adsorption reaction and kinetics of Zn on zeolite mineral comparing with two calcareous soils. Basrah Journal of Agricultural Sciences, 36(2), 199-214. https://doi.org/10.37077/25200860.2023.36.2.15
Al-Salhi, A. A., Al-Shatty, S. M., Al-Imara, E. A., & Al-Khfaji, Q. J. (2022). A new record of lactic acid bacteria strains from the contents of adult chicken intestines. Basrah Journal of Agricultural Sciences, 35(2), 199-222. https://doi.org/10.37077/25200860.2022.35.2.14
Al-Seraih, A. A., Swadi, W. A., Al-hejjaj, M. Y., Al-Laibai, F. H., & Ghadban, A.K. (2022). Isolation and partial characterization of glycolipopeptide biosurfactant derived from a novel Lactiplantibacillus plantarum L bp_WAM. Basrah Journal of Agricultural Sciences, 35(2), 78-98. https://doi.org/10.37077/25200860.2022.35.2.06
Asenjo, J. A., & Andrews, B. A. (2009). Protein Purification using Chromatography: Selection of type, modeling and optimization of operating conditions, Journal of Molecular Recognition, 22(2), 65-76. https://doi.org/10.1002/jmr.898
Banerjee, G., Nandi, A., & Ray, A. K. (2016). Assessment of hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated from the gastrointestinal tract of fish. Archives of Microbiology, 199, 115–124. https://doi.org/10.1007/s00203-016-1283-8
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
Budde, B. B., Hornbæk, T., Jacobsen, T., Barkholt, V., & Koch, A. G. (2003). Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. International Journal of Food Microbiology, 83, 171–184. https://doi.org/10.1016/s0168-1605(02)00364-1
Campbell, L. S., Charnock, J., Dyer, A., Hillier, S., Chenery, S., Stoppa, F., Henderson, C. M. B., Walcott, R., & Rumsey, M. (2016). Determination of zeolite-group mineral compositions by electron probe microanalysis. Mineralogical Magazine, 80(5), 781-807. https://doi.org/10.1180/minmag.2016.080.044
Candeliere, F., Raimondi, S., Spampinato, G., Tay, M. Y. F., Amaretti, A., Schlundt, J., & Rossi, M. (2021). Comparative genomics of Leuconostoc carnosum. Frontiers in Microbiology, 11, 605127. https://doi.org/10.3389/fmicb.2020.605127
Choeisoongnern, T., Sivamaruthi, B. S., Sirilun, S., Peerajan, S., Choiset, Y., Rabesona, H., Haertle, T., & Chaiyasut, C. (2020). Screening and identification of bacteriocin-like inhibitory substances producing lactic acid bacteria from fermented products, Food Science and Technology (Campinas), 40(3), 571-579. https://doi.org/10.1590/fst.13219
Cui, G., Panb, C., Xua, P., Lia, Y., Wanga, L., Gonga, B., Lic, X., & Huanga, S. (2020). Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis CG-9 from human saliva, Biotechnology & Biotechnological Equipment, 34(1), 1224–1233. https://doi.org/10.1080/13102818.2020.1830714
Djadouni, F., & Mebrouk, K. (2013). Characterization and determination of the factors affecting anti-listerial bacteriocins from Lactobacillus plantarum and Pediococcus pentosaceus isolated from dairy milk products, African Journal of Food Science, 7(3), 35–44. https://doi.org/10.5897/AJFS12.037
Dündar, H. (2006). Characterization and purification of a bacteriocin produced by Leuconostoc mesenteroides subsp. cremoris. Ph.D. Thesis. Middle East Technical University, 195pp. https://open.metu.edu.tr/handle/11511/16559
Eijsink, V. G., Axelsson, L., Diep, D. B., Håvarstein, L. S., Holo, H., & Nes, I. F. (2002). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Leeuwenhoek, 81(1-4), 639-654. https://doi.org/10.1023/A:1020582211262
Fathi, F., Kasra-Kermanshahi, R., Moosavi-Nejad, Z., & Qamsari, E. M. (2021). Partial purification, characterization and immobilization of a novel lipase from a native isolate of Lactobacillus fermentum, Iranian Journal of Microbiology, 13(6), 871-877. https://ijm.tums.ac.ir/index.php/ijm/article/view/3339
Gabrielsen, C., Brede, D. A., Nes, I. F., & Diep, D. B. (2014). Circular bacteriocins: biosynthesis and mode of action. Applied and Environmental Microbiology, 80(22), 6854-6862. https://doi.org/10.1128/AEM.02284-14
Hong, S. W., Kim, J., Cha, H. A., Chung, K. S., Bae, H. J., Park, W. S., Ham, J., Park, B., & Oh, M. (2022). Identification and characterization of a bacteriocin from the newly isolated Bacillus subtilis HD15 with inhibitory effects against Bacillus cereus. Journal of Microbiology and Biotechnology, 32(11), 1462–1470. https://doi.org/10.4014/jmb.2208.08006
Ibrahim, F., Siddiqui, N., Aman, A., Qader, S., & Ansari, A. (2020). Characterization, cytotoxic analysis and action mechanism of antilisterial bacteriocin produced by Lactobacillus plantarum isolated from cheddar cheese. International Journal of Peptide Research and Therapeutics, 26, 1751–1764. https://doi.org/10.1007/s10989-019-09982-5
Ivanova, I., Kabadjova, P., Pantev, A., Danova, S., & Dousse, X. (2000). Detection, purification and characterization of a novel bacteriocin substance produced by Lactobacillus lactis subsp. lactis B14 isolated from boza-bulgarian traditional cereals beverage. Biocatalysis - Fundamental and Application, 41, 47-53.https://www.semanticscholar.org/paper/DETECTION%2C-PURIFICATION-AND-PARTIAL-OF-A-NOVEL-BY-Ivanova-Kabadjova/9b4d80b342d104aa6f5b727055cf2016873a5222
Junnarkar, M., Pawar, S., Gaikwad, S., Mandal, A., Jass, J., & Nawani, N. (2019). Probiotic potential of lactic acid bacteria from fresh vegetables: Application in food preservation. Indian Journal of Experimental Biology, 57, 825-838. http://nopr.niscpr.res.in/handle/123456789/51174
Jung, G., & Sahl, H. G. (1991). Lantibiotics: A survey. Pp: 1-34. In: Jung, G., & Sahl, H. G., (Eds.). Nisin and novel lantibiotics. ESCOM Science, Springer Dordrecht, 490pp. https://link.springer.com/book/9789072199119
Khelkal, I. N. (2016). Comparison the Antibacterial activity of vitamin D2 and D3 Al-Mustansiriyah Journal of Science, 27(4), 1-7. https://mjs.uomustansiriyah.edu.iq/index.php/MJS/article/view/16
Kotsopoulos, T. A., Karamanlis, X., Dotas, D., & Martzopoulos G. G. (2008). The impact of diferent natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosystems Engineering, 99(1), 105-111. https://doi.org/10.1016/j.biosystemseng.2007.09.018
Lahiri, D., Chakraborti, S., Jasu, A., Nag, M., Dutta, B., Dash, S., & Ray, R. R. (2020).Production and purification of bacteriocin from Leuconostoc lactis SM 2 strain, Biocatalysis and Agricultural Biotechnology, 30. 101845. https://doi.org/10.1016/j.bcab.2020.101845
Mahdi, L. H. (2017). Immunomodulatory of Bifidobacterium breve and inhibitory effect of bifidobrevicin-LHM ON Streptococcus agalactiae and its β-hemolysin Iraqi Journal of Agricultural Science, 48(Special Issue), 156-170. https://doi.org/10.36103/ijas.v48iSpecial.257
Maurya, A. P., & Thakur, R. L. (2012). Inhibition spectrum, purification and characterization of bacteriocin from Leuconostoc NT-1. Current Science, 103(12), 1405-1407.http://www.jstor.org/stable/24089346
Maqueda, M., Gálvez, A., Bueno, M. M., Sanchez-Barrena, M. J., González, C., Albert, A., Rico, M., & Valdivia, E. (2004).Peptide AS-48: prototype of a new class of cyclic bacteriocins. Current Protein and Peptide Science, 5(5), 399-416.https://doi.org/10.2174/1389203043379567
Moghaddam, S. A. E., Harun, R., Mokhtar, M. N., & Zakaria, R. (2018). Potential of zeolite and algae in biomass immobilization. BioMed Research International, 2018, Article ID 6563196, 15pp. https://doi.org/10.1155/2018/6563196
Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E., & Herrmann,C. (2020). Application of zeolites for biological treatment processes of solid wastes and wastewaters—a review. Bioresource Technology, 301, 122808. https://doi.org/10.1016/j.biortech.2020.122808
Mühlbachová, G., & Šimon, T. (2003). Effects of zeolite amendment on microbial biomass and respiratory activity in heavy metal contaminated soils. Plant Soil Environmental, 49(12), 536–541. https://doi.org/10.17221/4190-PSE
Niamah, A. K. (2018). Structure, mode of action and application of pediocin natural antimicrobial food preservative: A review, Basrah Journal of Agricultural Sciences, 31(1), 59-69. https://doi.org/10.33762/bagrs.2018.160126
Nilsen, T., Nes, I. F., & Holo, H. (2003). Enterolysin A, a cell wall-degradingbacteriocin from Enterococcus faecalis LMG 2333. Applied and Environmental Microbiology, 69(5), 2975-2984. https://doi.org/10.1128/AEM.69.5.2975-2984.2003
Otunba, A. A., Osuntoki, A. A., Olukoya, D. K., & Babalola, B. A. (2021). Genomic, biochemical and microbial evaluation of probiotic potentials of bacterial isolates from fermented sorghum products. Heliyon, 7(12), E08536. https://doi.org/10.1016/j.heliyon.2021.e08536
Otunba, A. A., Osuntoki, A. A., Okunowo, W., Olukoya, D. K., & Babalola, B. A. (2022). Characterization of novel bacteriocin PB2 and comprehensive detection of the pediocin gene ped-A1 from Pediococcus pentosaceus PB2 strain isolated from a sorghum-based fermented beverage in Nigeria. Biotechnology Reports, 36, e00772.https://doi.org/10.1016/j.btre.2022.e00772
Parente, E., Brienza, C., Moles, M., & Ricciardi, A. (1995). A comparison of methods for the measurement of bacteriocin activity. Journal of Microbiological Methods, 22, 95-108. https://doi.org/10.1016/0167-7012(94)00068-I
Patel, A., Shah, N., & Verma, D. K. (2017). Lactic acid bacteria (LAB) bacteriocins: Anecological and sustainable biopreservative approach to improve the safety and shelf life of foods. Pp. 197–258. In Verma, D. K. & Srivastav, P. P. (Eds.), Microorganisms in sustainable agriculture, food and the environment, Apple Academic Press. 452pp. https://doi.org/10.1201/9781315365824
Perumal, V., & Venkatesan, A. (2017). Antimicrobial, cytotoxic effect and purification of bacteriocin from vancomycin susceptible Enterococcus faecalis and its safety evaluation for probiotization. Lebensmittel-Wissenschaft & Technologie, 78(1), 303–310. https://doi.org/10.1016/j.lwt.2016.12.048
Qiao, X., Du, R., Wang, Y., Han, Y., & Zhou, Z. (2020). Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. International Journal of Biological Macromolecules, 144, 151-159. https://doi.org/10.1016/j.ijbiomac.2019.12.090
Raimondi, S., Spampinato, G., Candeliere, F., Amaretti, A., Brun, P., Castagliuolo, I., & Rossi, M. (2021). Phenotypic traits and immunomodulatory properties of Leuconostoc carnosum isolated from meat products. Science Food Microbiology, 12, 730827. https://doi.org/10.3389/fmicb.2021.730827
Rasheed, H. T., Khalid, J. K., & Alaubydi, L. M. A. (2020). Purification and characterization of bacteriocin from Lactobacillus acidophilus HT1 and its application in a cream formula for the treatment of some skin pathogen. Iraqi Journal of Agricultural Sciences, 51(5), 1381-1393. https://doi.org/10.36103/ijas.v51i5.1148
Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Review in Food Science, and Nutrition, 42(2), 91-121. https://doi.org/10.1080/10408690290825475
Roy, V. K., Kumar, N. S., & Gurusubramanian, G. (2012). Proteins – structure, properties and their separation by SDS polyacrylamide gel electrophoresis. Science Vision, 12(4), 170-181.https://www.sciencevision.org/issue/29/article/192
Sanam, M. U., Detha, A. I., & Rohi, N. K. (2022). Detection of antibacterial activity of lactic acid bacteria, isolated from Sumba mare’s milk, against Bacillus cereus, Staphylococcus aureus, and Escherichia coli. Journal of Advanced Veterinary and Animal Research, 9(1), 53-58.https://doi.org/10.5455/javar.2022.i568
Senila, L., Hoaghia, A., Moldovan, A., Török, I. A., Kovacs, D., Simedru, D., Tomoiag, C. H., & Senila, M. (2022). The potential application of natural clinoptilolite-rich zeolite as support for bacterial community formation for wastewater treatment, Materials, 15, 3685. https://doi.org/10.3390/ma15103685
Silva, S. P., Ribeiro, S. C., Teixeira, J. A., & Silva, C. C. (2022). Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation, LWT, 153, 112486. https://doi.org/10.1016/j.lwt.2021.112486
Silva, R. M., Abreu, A. A., Salvador, A. F., Alves, M. M., Neves, I. C., & Pereira, M. A. (2021). Zeolite addition to improve biohydrogen production from dark fermentation of C5/C6 sugars and Sargassum sp. Biomass. Scientific Reports, 11, 16350. https://doi.org/10.1038/s41598-021-95615-
Stiles, M. E. (1994). Bacteriocins produced by Leuconostoc species. Journal of Dairy Science, 77(9), 2718-2724. https://doi.org/10.3168/jds.S0022-0302(94)77214-3
Taher, N. A. (2016). Antimicrobial effect of bacteriocin produced Pediococcus pentosaceus on some clinical isolates. Al-Mustansiriyah Journal of Science, 27(5), 2521-3520. https://doi.org/10.23851/mjs.v27i5.163
Tekeşoğlu, H., & Ergün, S. (2021). Effects of Dietary Natural Zeolite (Clinoptilolite) on Growth and Some Blood Parameters of Rainbow Trout (Onchorynchus mykiss, Walbaum 1792). Acta Aquatica Turcica, 17(1), 119-128. https://doi.org/10.22392/actaquatr.765667
Todorov, S. D., De Melo Franco, B. D. G., & Tagg, J. R. (2019). Bacteriocins of gram-positive bacteria having activity spectra extending beyond closely-related species. Beneficial Microbes, 10(3), 315-328. https://doi.org/10.3920/BM2018.0126
Tönz, A., Leischtfeld, S. F., Stevens, M. J. A., Glinski-Häfeli, D., Ladner, V., Gantenbein-Demarchi, C., & Schwenninger, S. M. (2024). Growth control of Listeria monocytogenes in raw sausage via bacteriocin-producing Leuconostoc carnosum DH25. Foods, 13(2), 298.https://doi.org/10.3390/foods13020298
Vasconcelos, A. A., Len, T., de Oliveira, A. N., Costa, A.A.F., Souza, A. R. S., Costa, C.E.F., Luque, R., do Rocha Filho, G. N., Noronha, R.C.R., & do Nascimento, L. A. S. (2023). Zeolites: A Theoretical and Practical Approach with Uses in (Bio) Chemical Processes. Journal of Applied Sciences, 13, 1897.https://doi.org/10.3390/app13031897
Verma, D. K., Thakur, M., Singh, S., Tripathy, S., Gupta, A. K., Baranwal, D., Patel, A.R., Shah, N., Utama, G. L., Niamah, A. K., Chávez-González, M. L., Gallegos, C. F., Aguilar, C. N., & Srivastav, P. P. (2022). Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. Food Bioscience, 46, 101594. https://doi.org/10.1016/j.fbio.2022.101594
Walker, J. M. (2009). The Protein Protocols Handbook. Third Edition. Springer-Verlag New York, LLC. https://www.amazon.com/Protein-Protocols-Handbook-Springer-Handbooks/dp/160327474X
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, 612285. https://doi.org/10.3389/fbioe.2021.612285
Whitaker, J. R. (1994). Principles of Enzymology for the Food Science. INC2nd edition. New York. 648pp. https://doi.org/10.1201/9780203742136
Yildirim, Z., Ilk, Y., Yildirim, M., Tokatli, K., & Öncül, N. (2014). Inhibitory effect of enterocin KP in combination with sub lethal factors on Escherichia coli O157: H7 or Salmonella Typhimurium in BHI broth and UHT milk. Turkish Journal of Biology. 38(3), 412-419. https://doi.org/10.3906/biy-1310-69
Zhou, K., Zhou, W., Li, P., Liu, G., Zhang, J., & Dai, Y. (2008) Mode of action of pentocin 31-1: an antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control, 19(8), 817-822. https://doi.org/10.1016/j.foodcont.2007.08.008
Zhu, Y., Huang, W. E., &Yang, Q. (2022). Clinical perspective of antimicrobial resistance in bacteria. The opinion on recent clinic antibiotics abuse. Infection and Drug Resistance, 15, 735-746. https://doi.org/10.2147/IDR.S345574