Main Article Content

Abstract

The jojoba tree is economically important plant due to its high contains of oil and its various industrial, commercial and medical applications. A practical experiment was carried out to determine the optimal combination of plant growth regulators affecting the response of transplanted buds to unfolding, growth and callus induction on the formed explants. The study was conducted in the Plant Tissue Culture laboratory at the College of Agriculture-University of Basrah. Apical shoots were used to produce the initial callus when cultured on MS nutrient medium with combinations of plant growth regulators (0.5, 1 and 2 mg L-1 NAA and 1, 2.5 and 5 mg L-1 TDZ). The quality of the formed callus and the most important secondary compounds were analyzed using Gas chromatography–mass spectrometry (GC–MS)and Fourier-transform infrared spectroscopy (FTIR).The MS media(murashige and skoog) supplemented with 1 mg L-1 NAA + 2.5 mg L-1 TDZ and 2 mg L-1 NAA + 5 mg L-1 TDZ was most effective for callus formation, with the short period of time and the highest percentages of callus formation and fresh weight.GC-MS analysis identified various active compounds in the jojoba plant callus. The callus tissue contained a wide range of secondary metabolic compounds, including ethylene diol, sitosterol, vaccenic acid and ethyl ester methyl mannose, which all exhibit antioxidant activity.FTIR method was integrated to the spectrophotometric system to detect characteristic peak values and functional groups. Chemical compounds included the main functional groups such as phenols, alkanes, amine salts, benzenoid and sulfoxide compounds, primary amine groups and a class of halocarbon compounds. The jojoba plant can be propagated by ex vivo under the influence of plant growth regulators, producing secondary and chemical compounds significant in industrial and medical applications.

Keywords

Jojoba Plant tissue culture Secondary compounds

Article Details

How to Cite
Althuluth, A. H. A. ., Suhaim , A. A. ., & Auda, M. S. . (2024). Detection of Bioactive Compounds Produced by in Vitro Culture of Jojoba Plants (Simmondsia chinesi (Link) Schn.) Using GCMS and FTIR. Basrah Journal of Agricultural Sciences, 37(2), 54–66. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1980

References

  1. AL-Alwani, A. A. M., & Mohammed, M. A. (2023). Propagation of Chia Plants Using Plant Tissue Culture Technique. Journal of Biotechnology Research Center, 17(1), 66–80. https://doi.org/10.24126/jobrc.2023.17.1.702
  2. Al-Asadi, A. Z., Abdulwahid, A. H., & Al-Mayahi, A. M. W. (2019). The effect of thidiazuron on callus and in vitro shoots development of date palm (Phoenix dactylifera L.) cv. barhee. Basrah Journal of Agricultural Sciences, 32(Special Issue), 258–265. https://doi.org/10.37077/25200860.2019.170
  3. Al-Drisi, E. E., Ibrahim, M. A., & Jasim, A. M. (2022). Impact of Different Sucrose Concentrations on Shoot Multiplication of Papaya (Carica papaya L.) Cultured in vitro. Basrah Journal of Agricultural Sciences, 35(2), 240–247. https://doi.org/10.37077/25200860.2022.35.2.17
  4. Al-Ghamdi, A. K., Elkholy, T. A., Abuhelal, S., Alabbadi, H., Qahwaji, D., Sobhy, H., Khalefah, N., & Hilal, M. A. (2017). Study of Jojoba (Simmondsia chinensis) Oil by Gas Chromatography. Natural Products Chemistry & Research, 05(06), 1–4. https://doi.org/10.4172/2329-6836.1000282
  5. Al-Obaidi, J. R., Halabi, M. F., AlKhalifah, N. S., Asanar, S., Al-Soqeer, A. A., & Attia, M. F. (2017). A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant. Biological Research, 50(1), 1–9. https://doi.org/10.1186/s40659-017-0131-x
  6. Alrazn, S. M. H., Alkhalifa, A. A. S., & Al-Sereh, E. A. (2023). Effect of cytokinin TDZ and auxin IBA on the succession of plants of the banana plant Musaa acumanata, the Grand-Nain hybrid cultivar, using tissue culture technology. Journal of Wildlife and Biodiversity, 7(Special Issue), 277–290. https://doi.org/10.5281/zenodo.10213198
  7. Badawy, E., El-Shehy, O., Habeb, A., & Ahmed, D. (2013). ANALYSIS OF JOJOBA OIL EXTRACTED FROM in vitro CALLUS AND SEEDS BY GC/MS. Egyptian Journal of Agricultural Sciences, 64(1), 59–66. https://doi.org/10.21608/ejarc.2013.213663
  8. Bouchereau, A., Guenot, P., & Larhera, F. (2000). Analysis of amines in plant materials. Journal of Chromatography B, 747, 49–67. https://doi.org/10.1136/bmj.2.1147.1273
  9. Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiology and Biochemistry, 72, 1–20. https://doi.org/10.1016/j.plaphy.2013.05.009
  10. Corredoira, E., Ballester, A., & Vieitez, A. M. (2008). Thidiazuron-induced high-frequency plant regeneration from leaf explants of Paulownia tomentosa mature trees. Plant Cell, Tissue and Organ Culture, 95(2), 197–208. https://doi.org/10.1007/s11240-008-9433-6
  11. da Silva, J. A. T., Dobránszki, J., & Ross, S. (2013). Phloroglucinol in plant tissue culture. In Vitro Cellular and Developmental Biology - Plant, 49(1), 1–16. https://doi.org/10.1007/s11627-013-9491-2
  12. El Sherif, F., AlDayel, M., Ismail, M. B., Alrajeh, H. S., Younis, N. S., & Khattab, S. (2023). Bio-Stimulant for Improving Simmondsia chinensis Secondary Metabolite Production, as Well as Antimicrobial Activity and Wound Healing Abilities. Plants, 12(18), 1–20. https://doi.org/10.3390/plants12183311
  13. Fancello, F., Zara, S., Petretto, G. L., Chessa, M., Addis, R., Rourke, J. P., & Pintore, G. (2017). Essential oils from three species of Mentha harvested in Sardinia: chemical characterization and evaluation of their biological activity. International Journal of Food Properties, 20(2), 1751–1761. https://doi.org/10.1080/10942912.2017.1354020
  14. Gonçalves, S., & Romano, A. (2013). In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnology Advances, 31(2), 166–174. https://doi.org/10.1016/j.biotechadv.2012.09.006
  15. Guo, B., Abbasi, B. H., Zeb, A., Xu, L. L., & Wei, Y. H. (2011). Thidiazuron: A multi-dimensional plant growth regulator. African Journal of Biotechnology, 10(45), 8984–9000. https://doi.org/10.5897/ajb11.636
  16. Hamedi, A., Mohagheghzadeh, A., & Rivaz, S. (2013). Preliminary pharmacognostic evaluation and volatile constituent analysis of spathe of Phoenix dactylifera L. (Tarooneh). Pharmacognosy Journal, 5(2), 83–86. https://doi.org/10.1016/j.phcgj.2013.02.005
  17. Hayat, J., Akodad, M., Moumen, A., Baghour, M., Skalli, A., Ezrari, S., & Belmalha, S. (2020). Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon, 6(11), e05609. https://doi.org/10.1016/j.heliyon.2020.e05609
  18. IBRAHIM, M. A., JASIM, A. M., & ABBAS, M. F. (2012). In vitro plant regeneration of Indian jujube (Ziziphus mauritiana Lamk.) cv. Zaytoni via indirect organogenesis. In Acta agriculturae Slovenica (Vol. 99, Issue 1). https://doi.org/10.14720/aas.2012.99.1.14521
  19. Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/tpc.113.116053
  20. Khan, A., Shah, A. H., & Ali, N. (2021). In ‑ vitro propagation and phytochemical profiling of a highly medicinal and endemic plant species of the Himalayan region ( Saussurea costus ). Scientific Reports, 11, 1–13. https://doi.org/10.1038/s41598-021-03032-1
  21. Khateeb, W. Al, Kanaan, R., El-Elimat, T., Alu’datt, M., Lahham, J., & El-Oqlah, A. (2017). In vitro propagation, genetic stability, and secondary metabolite analysis of wild lavender (Lavandula coronopifolia Poir.). Horticulture Environment and Biotechnology, 58(4), 393–405. https://doi.org/10.1007/s13580-017-0342-7
  22. Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18(2), 2328–2375. https://doi.org/10.3390/molecules18022328
  23. Kumar, S., Mangal, M., Dhawan, A. K., & Singh, N. (2013). Callus induction and plant regeneration from leaf explants of jojoba [Simmondsia chinensis (Link) Schneider]. Indian Journal of Biotechnology, 12(4), 544–547.
  24. Léon, F., Van Boven, M., De Witte, P., Busson, R., & Cokelaere, M. (2004). Isolation and Identification of Molecular Species of Phosphatidylcholine and Lysophosphatidylcholine from Jojoba Seed Meal (Simmondsia chinensis). Journal of Agricultural and Food Chemistry, 52(5), 1207–1211. https://doi.org/10.1021/jf035296h
  25. Murali, V. S., Devi, V. N. M., Parvathy, P., & Murugan, M. (2021). Phytochemical screening, FTIR spectral analysis, antioxidant and antibacterial activity of leaf extract of Pimenta dioica Linn. Materials Today: Proceedings, 45(xxxx), 2166–2170. https://doi.org/10.1016/j.matpr.2020.10.038
  26. Pawar, S., & Kamble, V. (2017). PHYTOCHEMICAL Screening , Elemental And Functional Group Analysis Of Vitex Negundo L . Leaves. International Journal of Pharmacy and Pharmaceutical Sciences, 9(6), 226–230.
  27. Pharmawati, M., & Wrasiati, L. P. (2020). Phytochemical Screening And Ftir Spectroscopy On Crude Extract From Enhalus Acoroides Leaves. Malaysian Journal of Analytical Sciences, 24(1), 70–77.
  28. Raji, P., Samrot, A. V., Rohan, D. B., Kumar, P. D., Geetika, R., Sharma, V. K., & Keerthana, D. (2019). Extraction, characterization and invitro bioactivity evaluation of alkaloids, flavonoids, saponins and tannins of cassia alata, thespesia populnea, euphorbia hirta and wrightia tinctoria. Rasayan Journal of Chemistry, 12(1), 123–137. https://doi.org/10.31788/RJC.2019.1214054
  29. Schaller, G. E., Bishopp, A., & Kieber, J. J. (2015). The yin-yang of hormones: Cytokinin and auxin interactions in plant development. In The Plant Cell (Vol. 27, Issue 1, pp. 1–20). https://doi.org/10.1105/tpc.114.133595
  30. Singh, A., Reddy, M. P., & Patolia, J. S. (2008). An improved protocol for micropropagation of elite genotypes of Simmondsia chinensis (Link) Schneider. Biologia Plantarum, 52(3), 538–542. https://doi.org/10.1007/s10535-008-0105-5
  31. Singh, P. K., Singh, J., Medhi, T., & Kumar, A. (2022). Phytochemical Screening, Quantification, FT-IR Analysis, and In Silico Characterization of Potential Bio-active Compounds Identified in HR-LC/MS Analysis of the Polyherbal Formulation from Northeast India. ACS Omega, 7, 33067–33078. https://doi.org/10.1021/acsomega.2c03117
  32. Smith, B. C. (2019). Organic Nitrogen compounds V: Amine salts. Spectroscopy (Santa Monica), 34(9), 30–37.
  33. Solliman, M. E.-D., Shehata, W. F., Mohasseb, H. A. A., Aldaej, M. I., Al-Khateeb, A. A., Al-Khateeb, S. A., Hegazy, A. E. A., & Abdel-Moneim, H. M. (2017). Induction of biochemical active constituents of Jojoba ( Simmondsia chinensis ( Link ) Schneider ) callus affected by hormones. Journal of Medicinal Plants Research, 11(2), 34–42. https://doi.org/10.5897/JMPR2015.6196
  34. Tripathi, N., Kumar, S., Singh, R., Singh, C. J., Singh, P., & Varshney, V. K. (2013). Isolation and Identification of - Sitosterol by GC-MS from the Leaves of Girardinia heterophylla ( Decne ). The Open Bioactive Compounds Journal, 4, 25–27.
  35. Wang, S., Alseekh, S., Fernie, A. R., & Luo, J. (2019). The Structure and Function of Major Plant Metabolite Modifications. Molecular Plant, 12(7), 899–919. https://doi.org/10.1016/j.molp.2019.06.001
  36. Zambari, I. F., Abdul Hafid, S. R., & Muhamad, N. A. (2021). Optimisation of Extraction Method and Phytochemical Compounds of Green Christia vespertilionis Leaves using GC-MS. International Journal of Pharmaceutical Sciences Review and Research, 70(1), 1–8. https://doi.org/10.47583/ijpsrr.2021.v70i01.001