Main Article Content

Abstract

The experiment was conducted in a partially shaded area (50% shade-net) throughout the 2023 growing season. This experiment aimed to know the role of biofertilization in increasing the ability of grapefruit seedlings to tolerate salt stress. Biofertilizers were applied with four levels (without biofertilizers, mycorrhizal fungi, bacteria, and mycorrhizae + bacteria). 20 g of mycorrhizal fungi were added near the saplings roots. 20 ml of bacteria were injected into the soil and in contact with the root zone. Adding 20 g of mycorrhizal fungi + 20 ml of bacteria to the pots soil at the same time and near the roots of the saplings carried out the mycorrhizae + bacteria treatment. Saplings were watered with three concentrations of saline water (2¸ 4¸ and 6 ds.m-l NaCl2). The results indicated that at the 6 ds.m-1 level, there was a reduction in physical and biochemical parameters. This decrease is accompanied with an increase in proline, Cl%, and Na%. The integration of mycorrhizal fungus and Azospirillum bacteria showed a significant superiority in root and shoot growth. Biofertilization caused increase the content of   carbohydrates, protein, and chlorophyll in plants. Also, obtained result showed increase the content of some macro and micro- elements in plants such as N, P, K, Zn and Fe. While the percentage of Cl and Na and proline content decreased, resulting reduced the damages of salt stress.

Keywords

Abiotic stress Bacteria Ion absorption Mycorrhiza Proline

Article Details

How to Cite
Abdulkadhim, S. J. . (2024). Influence of Bio-fertilization on Physical and Biochemical Parameters of Grapefruit Saplings Citrus paradisi Macfad. Under Salt Stress. Basrah Journal of Agricultural Sciences, 37(2), 78–89. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1982

References

  1. Abbas, A. T., & Abdulkadhim, S. J, (2024). The impact of biofertilization and rootstock type on the development of grafted Citrus aurantifoia Seedlings. IOP Conf. Series: Earth and Environmental Science, 1371, 042061. https://iopscience.iop.org/article/10.1088/1755-1315/1371/4/042061
  2. Abd, A. M., Altemimy, I. H. H., & Altemimy, H. M. A. (2020). Evaluation of the effect of nano fertilization and disper osmotic in treating the salinity of irrigation water on the chemical and mineral properties of date palm (Phoenix dactylifera L.) Basrah Journal of Agricultural Sciences, 33(1), 68-88. https://doi.org/10.37077/25200860.2020.33.1.06
  3. Abdel-Shafy, H. I., & El-Khateeb, M. A. (2021). Heavy metals in Citrus fruits as affected by primary treated sewage irrigation. Egyptian Journal of Chemistry, 64(1), 165–176. https://doi.org/10.21608/EJCHEM.2020.32685.2693
  4. Abdulkadhim, S. J. (2019). Influence of Bio- fertilizer and spraying with palm pollen grains extracts on some growth indicators and leaves content of nutrient in pomegranate cv. salimi. Plant Archives, 19(1), 1458-1464.
  5. Abdulkadhim, S. J, & Mortada, A. M. (2022). Effect of Nano NPK and proline spraying on chemical traits of wonderful cultivar pomegranate seedlings under salt stress. International Journal of Agricultural and Statistical Science, 18(Supplement 1), 1875-1882. https://connectjournals.com/03899.2022.18.1875
  6. Abdulkadhim, S. J., & Hussein, R. N. (2023). Effect of Vermicompost, Bio fertilizer and Chemical on vegetative growth trait of strawberry plant (fragaria x ananassa) rubygem cultivar. Intrnational Journal of Agricultural. Statistical Science, 19(Supplement 1), 1031-1039. https://doi.org/10.59467/IJASS.2023.19.1031.
  7. Ahmad, P., Hameed, A., Abd-Allah, E. F., Sheikh, S. A., Wani, M. R., Rasool, S., Jamsheed S. & Kumar, A., (2014). Biochemical and Molecular Approaches for Drought Tolerance in Plants. Pp. 1-29. Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment. Volume 1, Springer, New York, 376pp. https://doi.org/10.1007/978-1-4614-8600-8_1
  8. Alhaddad, F. A., Abu-Dieyeh, M. H., ElAzazi, ES. M., & Ahmed, T. A. (2021). Salt tolerance of selected halophytes at the two initial growth stages for future management options. Scientific Reports journal, 11, 10194. https://doi.org/10.1038/s41598-021-89462-3
  9. Allan, J. E., (1961). The determination of zinc in agricultural materials by atomic-absorption spectrophotometry. Analyst, 86, 1025, pp: 530-534. https://pubs.rsc.org/en/content/articlelanding/1961/an/an9618600530
  10. Azcon-Aguilar, C., & Barea, J.M. (1997). Arbuscular Mycorrhizae and biological control of soil – borne plant pathogens- an overview of the mechanisms involved. Mycorrhiza, 6, 457–464. https://doi.org/10.1007/s005720050147
  11. Baccari, S., Elloumi, O., Chaari-Rkhis, A., Fenollosa, E., Morales, M., Drira, N., & Munné-Bosch, S. (2020). Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo-and antioxidant protection in juvenile olive trees subjected to severe drought. Frontiers in Plant Science, 11, 614144. https://doi.org/10.3389/fpls.2020.614144
  12. Balal, R. M., Khan, M. M., Shahid, M. A., Mattson, N. S., Abbas, T., Ashfaq, M., Garcia-Sanchez, F., Ghazanfer, U., Gimeno, V., & Iqbal, Z. (2012). Comparative studies on the physiobiochemical, enzymatic, and ionic modifications in salt-tolerant and salt-sensitive citrus rootstocks under NaCl stress. Journal of the American Society for Horticultural Science, 137(2), 86-95.https://doi.org/10.21273/JASHS.137.2.86
  13. Bates, L. S., Waldran, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205-208. https://doi.org/10.1007/BF00018060
  14. Boguszewska, D. & Zagdańska B. (2012). ROS as signaling molecules and enzymes of plant response to unfavorable environmental conditions. Pp. 341-362. In Lushchak, V., & Semchyshyn, H. M. (Editor). Oxidative stress - Molecular Mechanisms and Biological Effects, IntechOpen. 376pp. https://doi.org/10.5772/33589
  15. Bottini, R., Cassan, F., & Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology 65(5), 497-503. https://doi.org/10.1007/s00253-004-1696-1
  16. Fadhil, A. H., & Abdulkadhim, S. J. (2020). Influence of bio and mineral fertilization and palm Polen extract in growth of lime seedling. Plant Archives, 20(2), 6475-6480.
  17. García-Fraile, P., Menéndez, E. & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. Journal Microbial biotechnology, 2(3), 183-205. https://www.researchgate.net/publication/280941205
  18. Haran, M. S., & Thaher, A. T. (2019). Effect Bio-fertilizer of Bacillus, Azotobacter and Pseudomonas floresence in the growth and production of corn plant (Zea mays L.). Basrah Journal of Agricultural Sciences, 32(2), 7- 14. https://doi.org/10.37077/25200860.2019.252
  19. Hashem, A. H., & Abdulkadhim, S. J. (2024). Impact of foliar application with amino alexin and a mixture of marvel fertilizer with growth regulator (floratone) in physio-biochemical parameters of bitter orange saplings (Citrus aurantium L.), IOP Conf. Series: Earth and Environmental Science, 1371,https://iopscience.iop.org/article/10.1088/1755-1315/1371/4/042056
  20. Hmiz, Dh. J., & Ithbayyib, I. J. (2021). Effect of the root zone temperature and salt stress on plant growth, main branches and some other chemical characteristics of tomato fruit Solanum lycopersicum L. cv. Memory. Basrah Journal of Agricultural Sciences, 34(1), 156-170. https://doi.org/10.37077/25200860.2021.34.1.14
  21. Horneck, D. A., & Hanson, D. (1998). Determination of potassium and sodium by flame emission spectrophotometry. Pp. 153-155, In Kalra, Y. (Editor). Handbook of Reference Methods for Plant Analysis Soil and Plant Analysis Council, Inc., CRC Press. FL., 287pp. (alk. paper). https://doi.org/10.1201/9780367802233
  22. John, M. K. (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Science, 109(4), 214-220.
  23. Josefa, M., érez-Tornero, N. O., & Asunción, M. (2013). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171(1). https://doi.org/10.1016/j.jplph.2013.06.006
  24. Kalra, Y. P., & Maynard, D. G. (1991). Methods Manual for Forest Soil and Plant Analysis. For Can., Northwest Reg., Northern Forestry Center. Edmonton, Alberta. Information Report. NOR-X-319. 116pp.
  25. Kumar, A., Gaurav, K. P., Tanvir, K., Olivia, P., Collin, O., Rajinikanth, M., Kriti, A., Ashok, Y., Rubee, D., Divjot, K., Rai, A. K., Manish, K. & Yadav, A. N. (2022). Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability. Journal of Applied Biology & Biotechnology, 10(Suppl 1), 90-107. http://doi.org/10.7324/JABB.2022.10s111
  26. Mahdi, A. S., Abd, A. M., & Awad, Kh. M. (2022). Effect of foliar application of nano-selenium on the anatomical characteristics of date palm Phoenix dactylifera L. barhi cultivar under salt stress. Basrah Journal of Agricultural Sciences, 35(2), 313-325. https://doi.org/10.37077/25200860.2022.35.2.24
  27. Martinez-Medina, A., Rolda, A., Albacete, A. & Pascual, J. A. (2011). The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Photochemistry, 72(2-3), 223-229. https://doi.org/10.1016/j.phytochem.2010.11.008
  28. Novamsky, I., Van Eck, R., Van Schouwenburg, C., & Walinga, I. (1974). Total nitrogen determination in plant material by means of the indophenol-blue method. Netherlands Journal of Agricultural Science, 22(1), 3-5. https://doi.org/10.18174/njas.v22i1.17230
  29. Obead, F. T. & Jerry, A. N. (2019). Effect of irrigation water quality and spraying with tocopherol on Na, K, K+/Na+ and Cl- and chemical components of okra (Abelmoschus esculentus L. Moench). Basrah Journal of Agricultural Sciences, 32(Spec Issue), 291-301. https://doi.org/10.37077/25200860.2019.178
  30. Olayinka, B. U., Abdulbaki, A. S., Lawal, A. R., Alsamadany, H., Abdulra’uf, L. B., Ayinla, A., & Odudu, U. F. (2023). Enhancing germination and seedling growth in salt stressed maize lines through chemical priming. Basrah Journal of Agricultural Sciences, 36(2), 185-198. https://doi.org/10.37077/25200860.2023.36.2.14
  31. Puglisi, I., De Patrizio, A., Schena, L., Jung, T., Evoli, M., Pane, A., & Cacciola, S.O. (2017). Two previously unknown Phytophthora species associated with brown rot of Pomelo (Citrus grandis) fruits in Vietnam. PLoS One, 12(2), 1-19. https://doi.org/10.1371/journal.pone.0172085.
  32. Ranganna, S. (1999). Handbook of Analysis and Quality Control for Fruit and Vegetable Products. 2nd Edition).Tata Mc-Graw Hill publishing company Ltd: New Delhi.pp:58pp. https://ebin.pub/handbook-of-analysis-and-quality-control-for-fruit-and-vegetable-products-2nbsped-9780074518519-0074518518.html
  33. Rouari, A., Trabelsi, H., & Kherraze, M. E. (2024). Morpho-anatomical adaptations of Limoniastrum guyonianum Boiss. (Plumbaginaceae) to variations in the natural environment of the northern Algerian Sahara. International Journal of Environmental Studies, 1–16. https://doi.org/10.1080/00207233.2024.2358708
  34. Ryan, J. G., Estefan, G. R., & Rashid, A. (2002). Soil and plant analysis laboratory manual. Edition: 2nd, Publisher: International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria. https://hdl.handle.net/20.500.11766/67563
  35. Shah, M. A., Tariq, S., Abuzar, S. M., Ilyas, K., Qadees, I., Alsharif, I., Anam, K., Almutairi, R. T., Al-Regaiey, K. A., Babalghith, A. O., Saleem, U., Malik, Almikhlaf, M. A., Alanazi, Y. F., Albalawi, M., & Silva, A. S. (2024). Peel waste of citrus fruits: A valuable and renewable source of polyphenols for the treatment of diabesity. Research in Biotechnology, 7, 100204. https://doi.org/10.1016/j.crbiot.2024.100204
  36. Souid, A., Giorgetti, L., Smaoui, A., Abdelly, C., Magné, C., Ben Hamed, K., Longo, V., & Bellani, L. (2023). Germination and antioxidant responses to salt stress of Tunisian endemic Limonium species at early vegetative stage. Acta Physiologiae Plantarum, 46(1). 7. https://doi.org/10.1007/s11738-023-03632-6
  37. Spaepen, S., Dobbelaere, S., Croonenborghs, A., & Vanderleyden, J. (2008). Effects of Azospirillum brasilense, indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, .312(1), 15-23. https://doi.org/10.1007/s11104-008-9560-1
  38. Suhim, A. A., Awad, K. M., Jaffer, O. N., & Abass, M. H. (2023). The impact of salicylic and Jasmonic acid in mitigating salinity stress on date palm (Phoenix dactylifera L.) Barhi Cv. Basrah Journal of Agricultural Sciences, 36(1), 120-130. https://doi.org/10.37077/25200860.2023.36.1.10
  39. Volkov, V., & Beilby, M. J. (2017). Salinity tolerance in plants: Mechanisms and regulation of ion transport. Frontiers in Plant Science, 8, 1795. https://doi.org/10.3389/fpls.2017.01795
  40. Wu, Q. S. (2011). Mycorrhizal efficacy of Trifoliate Orange seedlings on alleviating temperature stress. Plant, Soil and Environment, 57(10), 459-464. https://doi.org/10.17221/59/2011-PSE
  41. Wu, Q. S., & Zou, Y. N. (2010). Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress, Scientia Horticulturae, 125(3), 289-293. https://doi.org/10.1016/j.scienta.2010.04.001
  42. Yaquby, A., Rabbani, B., Saddad, S. (2024). Effect of humic acid and ascorbic acid on seed germination and growth of cucumber (Cucumis sativus L.) under salinity stress. Basrah Journal of Agricultural Sciences, 37(1), 105-118. https://doi.org/10.37077/25200860.2024.37.1.09
  43. Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-019-56954-2
  44. Zhou, M. X., Classen, B., Agneessens, R., Godin, B., & Lutts, S. (2020). Salinity improves zinc resistance in Kosteletzkya pentacarpos in relation to a modification in mucilage and polysaccharides composition. International Journal of Environmental. Research, 14, 323–333. https://doi.org/10.1007/s41742-020-00258-1