Main Article Content

Abstract

Turnip yellows virus (TuYV), is one of the most important viruses belonging to the Polerovirus genus. Incidence, genetic variability, and population structure of TuYV have not yet been studied in mid-Eurasia Iraq. Different brassica fields in Babylon, Basrah, Najaf, and Qadisiyeh provinces of Iraq were surveyed for TuYV infection. A total of 149 symptomatic leaf samples were checked for TuYV infection using reverse transcription polymerase chain reaction (RT-PCR). Furthermore, total RNA from three symptomatic rapeseed (Brassica napus) leaf samples from Basrah-Iraq was used for RNA-Seq. The diversity and population structure of TuYV and the evolutionary forces that shape these populations have been considered. High prevalence infections (52.34%) of TuYV were detected in surveyed fields. An Iraqi isolate was fully sequenced and showed the highest identity 92.68% to a Swedish isolate. Full genome sequences indicated two main phylogroups, however, using ORF0, TuYV isolates clustered in four clades. Clade I was further divided into two subclades (IA and IB), where the Iraqi isolate fell into IB. The recent distribution of TuYV populations in GI and GIII can be inferred from high haplotype diversity and low genetic differentiation. The Fst and Nm values indicate that the gene flow was low, thus the opportunity for divergence in populations via genetic drift is enhanced. By selective pressure, it was found that amino acid substitutions also contribute to TuYV evolution. This is the first evidence of the TuYV full genome sequence in mid-Eurasian Iraq and highlights the importance of recombination and selection pressure in the evolution of TuYV. Analysis of these variations is necessary for making advances in control strategies of viral diseases to prevent their spread.

Keywords

full genome Iraq molecular analysis Turnip yellows virus

Article Details

How to Cite
Al-Waeli, M. ., Farzadfar, S. ., & Pourrrahim, R. . (2024). Complete Genome Sequence of Turnip yellows polerovirus from Iraq: Insight into the Factors Affecting the Genetic Variability of TuYV Populations. Basrah Journal of Agricultural Sciences, 37(2), 206–220. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1996

References

  1. Al-Zehebawi, N. A., Al-Waily, D. S., & Al-Saad, L. A. (2019). The Application of manure (Poultry Wastes) and bio-formulations of Trichoderma harzianum and T. viride and their interaction to control root-knot disease on radish and chard. Basrah Journal of Agricultural Sciences, 32(1), 88-98. https://doi.org/10.37077/25200860.2019.195
  2. Asare-Bediako, E. (2011). Brassicaceae: Turnip yellows virus interactions. Doctoral dissertation, University of Warwick, Coventry. https://wrap.warwick.ac.uk/44041/
  3. Bortolamiol, D., Pazhouhandeh, M., Marrocco, K., Genschik, P., & Ziegler-Graf, V. (2007). The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Current Biology 17(18), 1615-1621. https://doi.org/10.1016/j.cub.2007.07.061
  4. CSO. (2021). Central Statistical Organization IRAQ. 15 pp. https://cosit.gov.iq/ar/agri-stat/veg-prod
  5. Fadhil, A. A., & Thamer, N. K. (2023). Chemical Control of the Leaf Miner Scaptomyza flava Fallen (Diptera: Drosophilidae) and Determination of Acetamipride and Abamectin Residues on Radish Plant. Basrah Journal of Agricultural Sciences, 36(2), 226-234.
  6. https://doi.org/10.37077/25200860.2023.36.2.17
  7. Farooq, A. B. U., Ma, Y. Xi., Wang, Z., Zhuo, N., Wenxing, X., Wang, G. P., & Hong, N. (2013). Genetic diversity analyses reveal novel recombination events in Grapevine leafroll-associated virus 3 in China. Virus Research 171(1), 15-21. https://doi.org/10.1016/j.virusres.2012.10.014
  8. Farzadfar, Sh., & Pourrahim, R. (2017). Molecular detection of Turnip yellows virus (TuYV) infecting alfalfa in Iran. Australian Plant Disease Note 12, 12. https://doi.org/10.1007/s13314-017-0236-7·
  9. Felsenstein, J. (2005). PHYLIP (phylogeny inference package) version 3.6. Distributed by Author. Department of Genome Sciences, University of Washington, Seattle.
  10. Fiallo-Olivé, E., Navas-Hermosilla, E., Ferro, C. G., Zerbini, F. M., & Navas-Castillo, J. (2018). Evidence for a complex of emergent poleroviruses affecting pepper worldwide. Archives of Virology 163(5), 1171-1178. https://doi.org/10.1007/s00705-018-3733-x
  11. Filardo, F., Nancarrow, N., Kehoe, M., McTaggart, A., Congdon, B., Kumari, S. G., Aftab, M., Trębicki, P., Rodoni, B., Thomas, J., & Sharman, M. (2021). Genetic diversity and recombination between turnip yellows virus strains in Australia. Archives of Virology 166(), 813-829. https://doi.org/10.1007/s00705-020-04931-w
  12. Garcia-Ruiz. P. )2018(. Susceptibility genes to plant viruses. Viruses 10(9), 484. https://doi.org/10.3390/v10090484
  13. Gouveia, P., Santos, M. T., Eiras-Dias, J. E., & Nolasco, G. (2011). Five phylogenetic groups identified in the coat protein gene of grapevine leafroll-associated virus 3 obtained from Portuguese grapevine varieties. Archives of Virology 156(3), 413-420. https://doi.org/10.1007/s00705-010-0878-7
  14. Hauser, S., Weber, C., Vetter, G., Stevens, M., Beuve, M. & Lemaire, O. (2000). Improved detection and differentiation of poleroviruses infecting beet or rape by multiplex RT-PCR. Journal of Virological Methods 89(1-2), 11-21. https://doi.org/10.1016/s0166-0934(00)00203-2
  15. Hudson, R. R. (2000). A new statistic for detecting genetic differentiation. Genetics 155(4), 2011-2014. https://doi.org/10.1093/genetics/155.4.2011
  16. Hudson, R. R., Boos, D. D., & Kaplan, N. L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution 9(1), 138-151. https://doi.org/10.1093/oxfordjournals.molbev.a040703
  17. Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254-267. https://doi.org/10.1093/molbev/msj030
  18. Jones, O. R., & Wang, J. (2012). A comparison of four methods for detecting weak genetic structure from marker data. Ecology and Evolution 2(5), 1048-1055. https://doi.org/10.1002/ece3.237
  19. Jones, R. A. C., Coutts, B. A. & Hawkes, J. (2007). Yield-limiting potential of beet western yellows virus in Brassica napus. Australian Journal of Agricultural Research 58 (8)788-801. https://doi.org/10.1071/AR06391
  20. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGAX: Molecular evolutionary genetics analysis across Computing Platforms. Molecular Biology and Evolution 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
  21. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R. McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins. D. G. (2007). Clustal W and clustal X version 2.0. Bioinformatics 23(21), 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  22. LaTourrette, K., Holste, K. M., & Garcia-Ruiz, H. (2021). Polerovirus genomic variation. Virus Evolution 7(2), 1-18. https://doi.org/10.1093/ve/veab102
  23. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution 1(1), vev003. https://doi.org/10.1093/ve/vev003
  24. Newbert, M., (2016). The genetic diversity of Turnip yellows virus in oilseed rape (Brassica napus) in Europe, pathogenic determinants, new sources of resistance and host range. Doctoral dissertation, University of Warwick, Coventry. https://wrap.warwick.ac.uk/id/eprint/79104/
  25. Pagan, I., & Holmes, E. C. (2010). Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. Journal of Virology 84(2), 6177-6187. https://doi.org/10.1128/JVI.02160-09
  26. Parto, S., & Lartillot, N. (2018). Molecular adaptation in Rubisco: Discriminating between convergent evolution and positive selection using mechanistic and classical codon models. PLos One 13(2), e0192697. https://doi.org/10.1371/journal.pone.0192697
  27. Pimenta, R. J., Macleod, K., Babb, R., Coleman, K., MacDonald, J., Asare-Bediako, Jenner, C. E., & Walsh, J. A. (2024). Genetic variation of Turnip yellows virus in Arable and vegetable brassica crops, perennial wild Brassicas, and aphid vectors collected from the Plants. Plant Disease, 108(3), 616-623. https://doi.org/10.1094/PDIS-05-23-0906-RE
  28. Puthanveed, V., Singh, K., Poimenopoulou, E., Pettersson, J. Siddique, A. B., & Kvarnheden, A. 2023. Milder autumns may increase risk for infection of crops with Turnip yellows virus. Phytopathology 113(9), 1788-1798. https://doi.org/10.1094/PHYTO-11-22-0446-V
  29. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., GuiraoRico, S., Librado, P., Ramos-Onsins, S. E., & SanchezGracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248
  30. Schliephake, E., Graichen, K., & Rabenstein, F. (2000). Investigations on the vector transmission of the Beet mild yellowing virus (BMYV) and the Turnip yellows virus (TuYV). Journal Plant Disease and Protection 107(1), 81-87. https://eurekamag.com/research/003/483/003483778.php
  31. Schroeder, M. (1994). Investigations on the susceptibility of oilseed rape (Brassica-napus L, ssp napus) to diferent virus diseases. Journal Plant Disease and Protection 101, 567-589.
  32. Slavíková, L., Ibrahim, E., Alquicer, G., Tomašechová, J., Šoltys, K., Glasa, M., & Kundu, J. K. (2022). Weed hosts represent an important reservoir of Turnip yellows virus and a possible source of virus introduction into oilseed rape crop. Viruses 14(11), 2511. https://doi.org/10.3390/v14112511
  33. Smirnova, E., Firth, A. E., Miller, W. A., Scheidecker, D., Brault, V., Reinbold, C., Rakotondrafara, A. M., Chung, B, Betty Y-W., & Ziegler-Graff, V. (2015). Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. PLoS Pathology 11(5), e1004868. https://doi.org/10.1371/journal.ppat.1004868
  34. Sõmera, M., Fargette, D., Hébrard, E. & Sarmiento, C. (2021). ICTV Report Consortium 2021. ICTV Virus Taxonomy Profile: Solemoviridae. Journal of General Virology 102(12), 001707. https://doi.org/10.1099/jgv.0.001707
  35. Stevens, M., McGrann, G., Clark, B., & Authority, H. (2008). Turnip yellows virus (syn Beet western yellows virus): An emerging threat to European oilseed rape production. Research Review 69 HGCA. Available via: https://ahdb.org.uk/turnip-yellows-virus-syn-beet-western-yellows-virus-an-emerging-threat-to-european-oilseed-rape-production
  36. Sun, S. R., Chen, J. S., He, E. Q., Huang, M. T., Fu, H. Y., Lu, J. J., & Gao, S. J. (2021). Genetic variability and molecular evolution of Maize yellow mosaic virus populations from different geographic origins. Plant Disease, 105(4), 896-903. https://doi.org/10.1094/PDIS-05-20-1013-RE
  37. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3), 585-595. https://doi.org/10.1093/genetics/123.3.585
  38. Tsompana, M., Abad, J., Purugganan, M., & Moyer, J. (2005). The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Molecular Ecology 14(1), 53-66. https://doi.org/10.1111/j.1365-294X.2004.02392.x
  39. Umar, M.; Tegg, R.S.; Farooq, T.; Thangavel, T., & Wilson, C.R. (2022). Abundance of poleroviruses within Tasmanian pea crops and surrounding weeds, and the genetic diversity of TuYV isolates found. Viruses 14(8), 1690. https://doi.org/10.3390/v14081690
  40. Yang, C., Zhao, Q., Wang, Y., Zhao, J., Qiao, L., Wu, B, Yan, S., Zheng, J., & Zheng Xi. 2021. Comparative analysis of genomic and transcriptome sequences reveals divergent patterns of codon bias in wheat and its ancestor species. Frontier in Genetic 12, 732432. https://doi.org/10.3389/fgene.2021.732432
  41. Yang, Z. (2007). PAML4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24(8), 1586-1591. https://doi.org/10.1093/molbev/msm088