Main Article Content
Abstract
Tomato (Solanum lycopersicum L.) is one of the most important vegetable crops, and it is a source of daily diet and cash crop in Ethiopia. However, its production is affected by nutrient application methods of which foliar fertilization is a popular method. The objective of this review paper is to synthesize literatures on the effects of foliar fertilization on growth, yield and quality of tomato cultivars. Both macro and micronutrient concentrations were evaluated. The articles addressing that foliar fertilization effectively increased growth, yield and quality of tomato cultivars. Foliar fertilization to be effective and maximize crop yield and nutrient uptake, the "right type," "right rate," "right time “and” right place" are essential. The right nutrient selection satisfies crop requirements, and the optimal rate of application avoids stunted development. Applications should be timed for optimal absorption conditions to maximize efficacy and avoid waste by focusing on absorbent plant sections. These elements work together to promote sustainable and effective crop management. Over all, the results showed that with 10,000 ppm of urea fertilization, the Marglobe tomato cultivar achieved a plant height of 155.63 cm, fruit weight of 151 g, and a yield of 63.69 t/ha. Additionally, the findings indicated 9.05 ± 0.32% total soluble solids (TSS) and a chlorophyll content of 51.6 ± 1.31 SPAD values with 100 ppm of ZnO nanoparticles. In conclusion, foliar fertilization of nutrients increased growth, yield and quality of tomato cultivars however, the result vary from cultivar to cultivar. The foliar fertilization depends on appropriate time, weather condition, genotypes of tomato, leaf area index, amount of foliar fertilization, type of nutrient, and stage of crop.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Ahmed, R., Uddin, M.K., Quddus, M.A., Samad, M.Y.A., Hossain, M.A.M., & Haque, A.N.A. (2023). Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae, 9, 162. https://doi.org/10.3390/horticulturae90201622
- Ali, A., Hussain, I., Gul, H., Masoud, S., Khan, A., Wahab, F., & Khan, J. (2015). Effect of different doses of foliar fertilizer on yield and physiochemical characteristics of tomato (Lycopersicon esculentum Mill) cultivars under the agro climatic condition of Peshawar. International Journal of Biosciences, 7(1), 58-65 http://doi.org/10.12692/ijb/7.1.58-655
- Bello, A. S., Huda, A. K., Alsafran, M., Jayasena, V., Jawaid, M. Z., Chen, Z. H., & Ahmed, T. (2024). Tomato (Solanum lycopersicum) yield response to drip irrigation and nitrogen application rates in open-field cultivation in arid environments. Scientia Horticulturae, 334, 113298. https://doi.org/10.1016/j.scienta.2024.113298
- Birgin, Ö., Y., Akhoundnejad, H., & Dasgan, Y. (2021). The effect of foliar calcium application in tomato under drought stress in green house conditions. Applied Ecology and Environmental Research, 19(4), 2971-2982. http://doi.org/10.15666/aeer/1904_297129822
- Brasesco, F., Asgedom, D., & Casari, G. (2019). Strategic analysis and intervention plan for fresh and industrial tomato in the Agro-Commodities Procurement Zone of the pilot Integrated Agro-Industrial Park in Central-Eastern Oromia, Ethiopia. Addis Ababa. http://doi.org/10.13140/RG.2.2.36423.27045
- Chethan B. R. T. (2018). Foliar Fertilization of Nutrients. 3(1), 49-53.
- Dixit, A., Sharma, D., Sharma, T. K., & Bairwa, P. L. (2018). Effect of foliar application of some macro and micronutrients on growth and yield of tomato (Solanum lycopersicum L.) cv. ArkaRakshak. International Journal of Current Microbiology and Applied Sciences, 6, 197–203.
- Dixon, R. C. (2003). Foliar fertilization improves nutrient use efficiency. Fluid Journal, 11(40),22-23.
- El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., & Lahsini, A. (2018). Extraction, chemical modification and characterization of chitin and chitosan. International Journal of Biological Macromolecules, 120, 1181–1189. https://doi.org/10.1016/j.ijbiomac.2018.08.139
- El-Fouly, M. M. (2001). Quality of foliar fertilizers. In International Symposium on Foliar Nutrition of Perennial Fruit Plants, 594, 277-281. http://doi.org/10.17660/ActaHortic.2002.594.32
- Fageria, N. K., Filho, M. B., Moreira, A., & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044-1064. https://doi.org/10.1080/01904160902872826
- Fatima, B., Zahrae, M. F., & Razouk, R. (2018). Chitin/chitosan’s bio-fertilizer: Usage in vegetative growth of wheat and potato crops. In Chitin-chitosan-myriad functionalities in science and technology. IntechOpen. http://doi.org/10.5772/intechopen.75208
- Gao, J. J., Bai, X. L., Zhou, B., Zhou, J. B., & Chen, Z. J. (2012). Soil nutrient content and nutrient balances in newly-built solar greenhouses in northern China. Nutrient Cycling in Agroecosystems, 94, 63-72. https://doi.org/10.1007/s10705-012-9526-9
- Haleema, B., Rab, A., & Hussain, S. A. (2018). Effect of calcium, boron and zinc foliar application on growth and fruit production of tomato. Sarhad Journal of Agriculture, 34(1), 19-30. https://doi.org/10.17582/JOURNAL.SJA%2F2018%2F34.1.19.30
- Hassnain, M., Alam, I., Ahmad, A., Basit, I., Ullah, N., Alam, I., Ullah, M. Khalid, A., Muhammad, B., & Shair, M. (2020). Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pakistan Journal of Agricultural Research, 33(1), 27-41. http://doi.org/10.17582/journal.pjar/2020/33.1.27.41
- Khan, M. M. A., Bhardwaj, G., Naeem, M., Mohammad, F., Singh, M., Nasir, S., & Idrees, M. (2008, June). Response of tomato (Solanum lycopersicum L.) to application of potassium and triacontanol. In XI International Symposium on the Processing Tomato 823 (pp. 199-208). https://doi.org/10.17660/ActaHortic.2009.823.29
- Laily, U. K., Rahman, M. S., Haque, Z., Barman, K. K., & Talukder, M. A. H. (2021). Effects of organic fertilizer on growth and yield of tomato. Progressive Agriculture, 32(1), 10-16. https://www.researchgate.net/publication/354704857
- Lakshari, W. A. I., & Sukanya, M. (2023). Effect of different concentrations of foliar application of chitosan on growth development of tomato (Solanum lycopersicum L.) cultivar grown in Sri Lanka. Journal of research technology and engineering 4 (3), 01-08.
- Majeed, H. H., & Al-Bayat, A. S. (2023). Role of foliar application of organic liquid fertilizers fortified with phosphorus and calcium in tomato yield and fruit quality. International Journal of Aquatic Science, 14(1), 96-105.
- Mengel, K. (2001). Alternative or complementary role of foliar supply in mineral nutrition. In International Symposium on Foliar Nutrition of Perennial Fruit Plants 594, 33-47. https://doi.org/10.17660/ActaHortic.2002.594.1
- Mondal, B. A. (2011). Effect of foliar application of urea on the growth and yield of tomato. Frontiers of Agriculture in China, 5(3), 372–374. http://doi.org/10.1007/s11703-011-1089-z
- Mooy, L. M., Hasan, A., & Onsili, R. (2019). Growth and yield of tomato (Lycopersicum esculantum Mill.) as influenced by the combination of liquid organic fertilizer concentration and branch pruning. In IOP Conference Series: Earth and Environmental Science, 260(1), 012170. IOP Publishing. https://doi.org/10.1088/1755-1315/260/1/012170
- Mubashir, A., Nisa, Z-u-, Shah, A. A., Kiran, M., Hussain, I, Ali, N., Zhang, L., Madnay, M. M. Y., Alsiary, W. A., Korany, S. M., Ashraf, M., Al-Mur, B. A., & AbdElgawad, H. (2023). Effect of foliar application of nano-nutrients solution on growth and biochemical attributes of tomato (Solanum lycopersicum) under drought stress. Frontiers in Plant Science, 13, 1066790. https://doi.org/10.3389/fpls.2022.1066790
- Muhammad, S., I. Ullah, A.Rab, S. T. Shah, F.Wahid, N. Ahmad, I. Ahmad, A. Ali, A. Basit, F. Bibi & M. Ahmad. (2020). Foliar application of calcium improves growth, yield and quality of tomato cultivars. Pure and Applied Biology, 9(1), 10-19. http://doi.org/10.19045/bspab.2020.90002
- Parvin, M. A., Zakir, H. M., Sultana, N., Kafi, A., & Seal, H. P. (2019). Effects of different application methods of chitosan on growth, yield and quality of tomato (Lycopersicon esculentum Mill.). Archives of Agriculture and Environmental Science, 4(3), 261-267. http://doi.org/10.26832/24566632.2019.040301
- Philibert, T., Lee, B. H., & Fabien, N. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied biochemistry and biotechnology, 181, 1314–1337. https://doi.org/10.1007/s12010-0162286-2
- Rahman, M. S., M. R. Hossain, A. Hossain & M. I. Khan. (2023). Impact of foliar boron application on the growth and yield of summer tomato. Journal of Agroforestry and Environment, 16(1), 58-63. http://doi.org/10.55706/jae1608
- Reyes-Pérez, J., E. A. Enríquez-Acosta, M. Á. Ramírez-Arrebato, E. Z. Valenzuela, L. Lara-Capistrán, L. G. Hernández-Montiel. (2020). Effect of chitosan on variables of tomato growth, yield and nutritional content. Revista Mexicana Ciencias Agrícolas, 11(3), 457-465 https://doi.org/10.29312/remexca.v11i3.2392
- Sakya, A. T. (2019, March). Foliar iron application on growth and yield of tomato. In IOP Conference Series: Earth and Environmental Science (Vol. 250, No. 1, p. 012001). IOP Publishing. http://doi.org/10.1088/1755-1315/250/1/012001
- Shaaban, M. M., & El-Fouly, M. M. (2001). Boron foliar application improves zinc and other nutrient status in cotton plants grown under low or high calcium carbonate level in the soil. Journal of Soil Science and Plant Nutrition, 17(1), 33-45. https://doi.org/10.3923/PJBS.2004.633.639
- Simpson, R. J., Oberson, A., Culvenor, R. A., Ryan, M. H., Veneklaas, E. J., Lambers, H., & Richardson, A. E. (2011). Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil, 349, 89-120. http://doi.org/10.1007/s11104-011-0880-1
- Souri, M. K., & Dehnavard, S. (2017). Characterization of tomato growth and fruit quality under foliar ammonium sprays. Open Agriculture, 2, 531-536. https://doi.org/10.1515/opag-2017-0055
- Souri, M. K., & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 1-7. https://doi.org/10.1186/s40538-019-0169-9
- Tanou, G., Ziogas, V., & Molassiotis, A. (2017). Foliar nutrition, biostimulants and prime-like dynamics in fruit tree physiology: new insights on an old topic. Frontiers in Plant Science, 8, 234693. https://doi.org/10.3389/fpls.2017.00075
References
Ahmed, R., Uddin, M.K., Quddus, M.A., Samad, M.Y.A., Hossain, M.A.M., & Haque, A.N.A. (2023). Impact of foliar application of zinc and zinc oxide nanoparticles on growth, yield, nutrient uptake and quality of tomato. Horticulturae, 9, 162. https://doi.org/10.3390/horticulturae90201622
Ali, A., Hussain, I., Gul, H., Masoud, S., Khan, A., Wahab, F., & Khan, J. (2015). Effect of different doses of foliar fertilizer on yield and physiochemical characteristics of tomato (Lycopersicon esculentum Mill) cultivars under the agro climatic condition of Peshawar. International Journal of Biosciences, 7(1), 58-65 http://doi.org/10.12692/ijb/7.1.58-655
Bello, A. S., Huda, A. K., Alsafran, M., Jayasena, V., Jawaid, M. Z., Chen, Z. H., & Ahmed, T. (2024). Tomato (Solanum lycopersicum) yield response to drip irrigation and nitrogen application rates in open-field cultivation in arid environments. Scientia Horticulturae, 334, 113298. https://doi.org/10.1016/j.scienta.2024.113298
Birgin, Ö., Y., Akhoundnejad, H., & Dasgan, Y. (2021). The effect of foliar calcium application in tomato under drought stress in green house conditions. Applied Ecology and Environmental Research, 19(4), 2971-2982. http://doi.org/10.15666/aeer/1904_297129822
Brasesco, F., Asgedom, D., & Casari, G. (2019). Strategic analysis and intervention plan for fresh and industrial tomato in the Agro-Commodities Procurement Zone of the pilot Integrated Agro-Industrial Park in Central-Eastern Oromia, Ethiopia. Addis Ababa. http://doi.org/10.13140/RG.2.2.36423.27045
Chethan B. R. T. (2018). Foliar Fertilization of Nutrients. 3(1), 49-53.
Dixit, A., Sharma, D., Sharma, T. K., & Bairwa, P. L. (2018). Effect of foliar application of some macro and micronutrients on growth and yield of tomato (Solanum lycopersicum L.) cv. ArkaRakshak. International Journal of Current Microbiology and Applied Sciences, 6, 197–203.
Dixon, R. C. (2003). Foliar fertilization improves nutrient use efficiency. Fluid Journal, 11(40),22-23.
El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., & Lahsini, A. (2018). Extraction, chemical modification and characterization of chitin and chitosan. International Journal of Biological Macromolecules, 120, 1181–1189. https://doi.org/10.1016/j.ijbiomac.2018.08.139
El-Fouly, M. M. (2001). Quality of foliar fertilizers. In International Symposium on Foliar Nutrition of Perennial Fruit Plants, 594, 277-281. http://doi.org/10.17660/ActaHortic.2002.594.32
Fageria, N. K., Filho, M. B., Moreira, A., & Guimarães, C. M. (2009). Foliar fertilization of crop plants. Journal of Plant Nutrition, 32(6), 1044-1064. https://doi.org/10.1080/01904160902872826
Fatima, B., Zahrae, M. F., & Razouk, R. (2018). Chitin/chitosan’s bio-fertilizer: Usage in vegetative growth of wheat and potato crops. In Chitin-chitosan-myriad functionalities in science and technology. IntechOpen. http://doi.org/10.5772/intechopen.75208
Gao, J. J., Bai, X. L., Zhou, B., Zhou, J. B., & Chen, Z. J. (2012). Soil nutrient content and nutrient balances in newly-built solar greenhouses in northern China. Nutrient Cycling in Agroecosystems, 94, 63-72. https://doi.org/10.1007/s10705-012-9526-9
Haleema, B., Rab, A., & Hussain, S. A. (2018). Effect of calcium, boron and zinc foliar application on growth and fruit production of tomato. Sarhad Journal of Agriculture, 34(1), 19-30. https://doi.org/10.17582/JOURNAL.SJA%2F2018%2F34.1.19.30
Hassnain, M., Alam, I., Ahmad, A., Basit, I., Ullah, N., Alam, I., Ullah, M. Khalid, A., Muhammad, B., & Shair, M. (2020). Efficacy of chitosan on performance of tomato (Lycopersicon esculentum L.) plant under water stress condition. Pakistan Journal of Agricultural Research, 33(1), 27-41. http://doi.org/10.17582/journal.pjar/2020/33.1.27.41
Khan, M. M. A., Bhardwaj, G., Naeem, M., Mohammad, F., Singh, M., Nasir, S., & Idrees, M. (2008, June). Response of tomato (Solanum lycopersicum L.) to application of potassium and triacontanol. In XI International Symposium on the Processing Tomato 823 (pp. 199-208). https://doi.org/10.17660/ActaHortic.2009.823.29
Laily, U. K., Rahman, M. S., Haque, Z., Barman, K. K., & Talukder, M. A. H. (2021). Effects of organic fertilizer on growth and yield of tomato. Progressive Agriculture, 32(1), 10-16. https://www.researchgate.net/publication/354704857
Lakshari, W. A. I., & Sukanya, M. (2023). Effect of different concentrations of foliar application of chitosan on growth development of tomato (Solanum lycopersicum L.) cultivar grown in Sri Lanka. Journal of research technology and engineering 4 (3), 01-08.
Majeed, H. H., & Al-Bayat, A. S. (2023). Role of foliar application of organic liquid fertilizers fortified with phosphorus and calcium in tomato yield and fruit quality. International Journal of Aquatic Science, 14(1), 96-105.
Mengel, K. (2001). Alternative or complementary role of foliar supply in mineral nutrition. In International Symposium on Foliar Nutrition of Perennial Fruit Plants 594, 33-47. https://doi.org/10.17660/ActaHortic.2002.594.1
Mondal, B. A. (2011). Effect of foliar application of urea on the growth and yield of tomato. Frontiers of Agriculture in China, 5(3), 372–374. http://doi.org/10.1007/s11703-011-1089-z
Mooy, L. M., Hasan, A., & Onsili, R. (2019). Growth and yield of tomato (Lycopersicum esculantum Mill.) as influenced by the combination of liquid organic fertilizer concentration and branch pruning. In IOP Conference Series: Earth and Environmental Science, 260(1), 012170. IOP Publishing. https://doi.org/10.1088/1755-1315/260/1/012170
Mubashir, A., Nisa, Z-u-, Shah, A. A., Kiran, M., Hussain, I, Ali, N., Zhang, L., Madnay, M. M. Y., Alsiary, W. A., Korany, S. M., Ashraf, M., Al-Mur, B. A., & AbdElgawad, H. (2023). Effect of foliar application of nano-nutrients solution on growth and biochemical attributes of tomato (Solanum lycopersicum) under drought stress. Frontiers in Plant Science, 13, 1066790. https://doi.org/10.3389/fpls.2022.1066790
Muhammad, S., I. Ullah, A.Rab, S. T. Shah, F.Wahid, N. Ahmad, I. Ahmad, A. Ali, A. Basit, F. Bibi & M. Ahmad. (2020). Foliar application of calcium improves growth, yield and quality of tomato cultivars. Pure and Applied Biology, 9(1), 10-19. http://doi.org/10.19045/bspab.2020.90002
Parvin, M. A., Zakir, H. M., Sultana, N., Kafi, A., & Seal, H. P. (2019). Effects of different application methods of chitosan on growth, yield and quality of tomato (Lycopersicon esculentum Mill.). Archives of Agriculture and Environmental Science, 4(3), 261-267. http://doi.org/10.26832/24566632.2019.040301
Philibert, T., Lee, B. H., & Fabien, N. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied biochemistry and biotechnology, 181, 1314–1337. https://doi.org/10.1007/s12010-0162286-2
Rahman, M. S., M. R. Hossain, A. Hossain & M. I. Khan. (2023). Impact of foliar boron application on the growth and yield of summer tomato. Journal of Agroforestry and Environment, 16(1), 58-63. http://doi.org/10.55706/jae1608
Reyes-Pérez, J., E. A. Enríquez-Acosta, M. Á. Ramírez-Arrebato, E. Z. Valenzuela, L. Lara-Capistrán, L. G. Hernández-Montiel. (2020). Effect of chitosan on variables of tomato growth, yield and nutritional content. Revista Mexicana Ciencias Agrícolas, 11(3), 457-465 https://doi.org/10.29312/remexca.v11i3.2392
Sakya, A. T. (2019, March). Foliar iron application on growth and yield of tomato. In IOP Conference Series: Earth and Environmental Science (Vol. 250, No. 1, p. 012001). IOP Publishing. http://doi.org/10.1088/1755-1315/250/1/012001
Shaaban, M. M., & El-Fouly, M. M. (2001). Boron foliar application improves zinc and other nutrient status in cotton plants grown under low or high calcium carbonate level in the soil. Journal of Soil Science and Plant Nutrition, 17(1), 33-45. https://doi.org/10.3923/PJBS.2004.633.639
Simpson, R. J., Oberson, A., Culvenor, R. A., Ryan, M. H., Veneklaas, E. J., Lambers, H., & Richardson, A. E. (2011). Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil, 349, 89-120. http://doi.org/10.1007/s11104-011-0880-1
Souri, M. K., & Dehnavard, S. (2017). Characterization of tomato growth and fruit quality under foliar ammonium sprays. Open Agriculture, 2, 531-536. https://doi.org/10.1515/opag-2017-0055
Souri, M. K., & Tohidloo, G. (2019). Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chemical and Biological Technologies in Agriculture, 6(1), 1-7. https://doi.org/10.1186/s40538-019-0169-9
Tanou, G., Ziogas, V., & Molassiotis, A. (2017). Foliar nutrition, biostimulants and prime-like dynamics in fruit tree physiology: new insights on an old topic. Frontiers in Plant Science, 8, 234693. https://doi.org/10.3389/fpls.2017.00075