Main Article Content

Abstract

The current study measured the expression of certain genes responsible for the tolerance of the maize (Zea mays L.) to salt stress when it was grown in soil containing (0.0,25, 50,75,100 mmol) sodium chloride (NaCl) for 30 days. The results indicated that the germination percentage decreased with the increased salt concentration. Isolated ribonucleic acid (RNA) from young leaves of maize seedlings was used as a template for manufacturing a piece of complementary nucleic acid (cDNA), gene expression was measured by Reverse Transcription Polymerase Chain Reaction (RT-PCR) for both PMP3 and ZmWRKY86 genes responsible for salinity stress tolerance. The expression level of the PMP3 gene increased with increasing salt concentration and reached 1.38 and 1 .86 at concentrations of 50 and 75 mmol, respectively, but decreased with increasing salt concentration to 100 mmol by 0.34%. The expression of the second gene ZmWRKY86 was increased with increasing salt concentration and reached a maximum level of 3.18 at 100 mmol of NaCl.

Keywords

Maize salt tolerance salt tolerant gene gene expression

Article Details

How to Cite
Taha, H. H. ., Khaleel, N. I. . ., & Mohammed, A. A. . . (2025). Detection the Expression of two Genes ZmWRKY86 and PMP3 responsible for tolerance to salt stress in maize . Basrah Journal of Agricultural Sciences, 38(1), 81–89. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2518

References

  1. Ahanger, M. A., Aziz, U., Alsahli, A. A., Alyemeni, M. N., & Ahmad, P. (2019). Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules, 10(1), 42. https://doi.org/10.3390/biom10010042
  2. Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N., Wijaya, L., Ali, S., & Ashraf, M. (2019). Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. Journal of Plant Growth Regulation, 38, 70-82. https://doi:10.1007/s00344-018-9810-2
  3. Alam, H., Khattak, J. Z., Ksiksi, T. S., Saleem, M. H., Fahad, S., Sohail, H., Ali, Q.,Zamin,M., El-Esawi, M.A., Saud,S.,Jiang,X.,Alwahibi,M.S., & Alkahtani,J.(2021). Negative impact of long‐term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiologia plantarum, 172(2), 1336-1351.
  4. https://doi.org/10.1111/ppl.13273
  5. Ali, M., Kamran, M., Abbasi, G. H., Saleem, M. H., Ahmad, S., Parveen, A.,Malik, Z.,Afzal, S., Ahmar ,S.,Dawar ,k.m.,Ali ,S. ,Alamri,S.,Siddiqui,M.H.,Akbar, R. & Fahad, S. (2021). Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. Journal of Plant Growth Regulation, 40, 2236-2248. https://doi.org/10.1007/s00344-020-10273-3
  6. Bo, C., Chen, H., Luo, G., Li, W., Zhang, X., Ma, Q., ... & Cai, R. (2020). Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant cell reports, 39, 135-148. https://doi.org/10.1007/s00299-019-02481-3.
  7. Chang-Qing, Z., Shunsaku, N., Shenkui, L., & Tetsuo, T. (2008). Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice. BMB reports, 41(6), 448-454. https://doi.org/10.5483/BMBRep.2008.41.6.448
  8. Fang, X., Li, W., Yuan, H., Chen, H., Bo, C., Ma, Q., & Cai, R. (2021). Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. Plant Physiology and Biochemistry, 167, 840-850. https://doi.org/10.1016/j.plaphy.2021.09.010
  9. Fu, J., Zhang, D. F., Liu, Y. H., Ying, S., Shi, Y. S., Song, Y. C., Li, Y., & Wang, T. Y. (2012). Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PloS one, 7(2), e31101. https://doi.org/10.1371/journal.pone.0031101
  10. Hamidi, H., & Safarnejad, A. (2010). Effect of drought stress on alfalfa cultivars (Medicago sativa L.) in germination stage. American-Eurasian Journal of Agricultural & Environmental Sciences, 8(6), 705-709.
  11. Hansen, J., Hellin, J., Rosenstock, T., Fisher, E., Cairns, J., Stirling, C., Lamann, C., Etten, J.V., Rose,A.,& Campbell, B. (2019). Climate risk management and rural poverty reduction. Agricultural Systems, 172, 28-46. https: //doi. org/ 10. 1016 /j. agsy.2018.01.019
  12. Hassan, A., Amjad, S. F., Saleem, M. H., Yasmin, H., Imran, M., Riaz, M., Ali, Q., Joyia,F.A., Ahmed,M.S. ,Ali, S.,Alsahli,A.A., & Alyemeni, M. N. (2021). Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi Journal of Biological Sciences, 28(8), 4276-4290. https://doi.org/10.1016/j.sjbs.2021.03.045
  13. Kang, Y., Yang, X., Liu, Y., Shi, M., Zhang, W., Fan, Y., Yao,Y., Zhang, J.,& Qin, S. (2021). Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato (Solanum tuberosum L.) response to alkali stress. International Journal of Biological Macromolecules, 182, 938-949. https://doi:10.1016/j.ijbiomac.2021.04.094
  14. Kwok, A.C.M., Zhang, F., Ma, Z., Chan, W.S., Yu, V.C., Tsang, J.S.H. &Wong, J.T.Y. (2020). Functional responses between PMP3 small membrane proteins and membrane potential. Environ. Microbiol, 22(8): 3066-3080. https://doi.org/10.1111/ 1462-2920.15027
  15. Li, J., Zhu, Q., Jiao, F., Yan, Z., Zhang, H., Zhang, Y., Ding, Z.,Mu,C. , Liu , X.,Li ,Y., Chen, J., & Wang, M. (2023) . Research progress on the mechanism of salt tolerance in maize: a classic field that needs new efforts. Plants, 12(12), 2356. https://doi.org/10.3390/plants12122356
  16. Liu, L., Xiang, Y., Yan, J., Di, P., Li, J., Sun, X., Han,G.,Ni,L.,Jiang,M.,Yuan,J., & Zhang, A. (2021). Brassinosteroid- signalling kinase 1 phosphorylating Calicium/ Calmodulin dependent protein kinase functions in drought tolerance in maize. New Phycologist, 231(2), 695-712.‏ https:/doi.org/10.1111/nph.17403
  17. Luo, M., Zhang, Y., Li, J., Zhang, P., Chen, K., Song, W.,Wang, X., Yang ,J.,Lu,X.,Lu,B.,Zhao,Y., & Zhao, J. (2021). Molecular dissection of maize seedling salt tolerance using a genome-wide association analysis method. Plant biotechnology journal, 19(10), 1937-1951. https://doi.org/10.1111/pbi.13607
  18. Mohamed, I. A., Shalby, N., MA El-Badri, A., Saleem, M. H., Khan, M. N., Nawaz, M.A., Qin,M. , Agami , R.A., Kuai,J.,Wang,B., & Zhou, G. (2020). Stomata and xylem vessels traits improved by melatonin application contribute to enhancing salt tolerance and fatty acid composition of Brassica napus L. plants. Agronomy,10(8),1186.
  19. Mohammed, B. A., Khandaker, M. M., Arshad, A. M., Nudin, N. F. H., Majrashi, A., & Mohd, K. S. (2023). Effects of Foliar NPK Application on Growth, Yield and Nutrient Content of Sweet Corn Grown on Rengam Series Soil. Basrah Journal of Agricultural Sciences, 36(1). https://doi.org/10.37077/25200860.2023.36.1.20
  20. Navarre, C., & Goffeau, A. (2000). Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. The EMBO journal. https://doi.org/10.1093/emboj/19.11.2515
  21. Nawaz, A., Haseeb, A., Malik, H., Ali, Q., & Malik, A. (2020). Genetic association among morphological traits of Zea mays seedlings under salt stress. Biologic and Clin Sci Res J, 21. https://doi.org/10.54112/bcsrj.v2020i1.21
  22. Noman, A., Ali, S., Naheed, F., Ali, Q., Farid, M., Rizwan, M., & Irshad, M. K. (2015). Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Archives of Agronomy and Soil Science, 61(12), 1659-1672. https://doi.org/10.1080/03650340.2015.1028379
  23. Olayinka, B. U., Abdulbaki, A. S., Lawal, A. R., Alsamadany, H., Abdulra’uf, L. B., Ayinla, A., & Odudu, U. F. (2023). Enhancing Germination and Seedling Growth in Salt Stressed Maize Lines through Chemical Priming. Basrah Journal of Agricultural Sciences, 36(2). https://doi.org/10.37077/25200860.2023.36.2.14
  24. Park, H.J., You,Y.N., Lee, A., Jung, H., Jo, S.H., Oh, N., Kim, H.S., Lee, H.J., Kim, J.K., Kim, Y.S., Jung, C., &Cho, H.S.(2020). OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice. Plant J. ,102(5),992-1007
  25. https://doi.org/10.1111/tpj.14682
  26. Qin, X., Duan, Z., Zheng, Y., Liu, W. C., Guo, S., Botella, J. R., & Song, C. P. (2020). ABC1K10a, an atypical kinase, functions in plant salt stress tolerance. BMC Plant Biology, 20, 1-13 . https://doi.org/10.1186/s12870-020-02467-4
  27. Sonsungsan, P., Suratanee, A., Buaboocha, T., Chadchawan, S., & Plaimas, K. (2024). Identification of Salt-Sensitive and Salt-Tolerant Genes through Weighted Gene Co-Expression Networks across Multiple Datasets: A Centralization and Differential Correlation Analysis. Genes, 15(3), 316. https://doi.org /10.3390/genes15030316
  28. Zaidi, P. H., Shahid, M., Seetharam, K., & Vinayan, M. T. (2022). Genomic regions associated with salinity stress tolerance in tropical maize (Zea Mays L.). Frontiers in Plant Science, 13, 869270. | https://doi.org/10.3389/fpls.2022.869270
  29. Zaman, M., Shahid, S. A., Heng, L., Shahid, S. A., Zaman, M., & Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, 43-53.
  30. https://doi.org/10.1007/978-3-319-96190-32
  31. Zhu, Y., Ren, Y., Liu, J. A., Liang, W., Zhang, Y., Shen, F., Ling,J., & Zhang, C. (2023). New genes identified as modulating salt tolerance in maize seedlings using the combination of transcriptome analysis and BSA. Plants, 12(6), 1331.
  32. https://doi.org/10.3390/plants 12061331

Similar Articles

You may also start an advanced similarity search for this article.