Main Article Content

Abstract

Arugula contains compounds with therapeutic and preventive roles against many diseases, and it promotes overall health. Additionally, its seeds contain promising medicinal oil that general health and disease prevention. An experiment was conducted over two agricultural seasons (autumn 2023-2024 and spring 2024) using a Randomized Complete Block Design (RCBD) with a split-plot system in three replicates to enhance the quantity and quality of the oil in the seeds. The biostimulant treatments (A) were applied to the main plots, with A1 as the control (no addition), A2 treated with Trichoderma harzianum, and A3 treated with Bacillus subtilis. Amino acids (B) were organized within the sub-plots, including B1 as the control (water spray), B2 with Arginine 150 mg L-1, B3 with Tryptophan 150 mg L-1, and B4 with Phenylalanine 150 mg L-1. The treatment with sprouted barley seed extract (C) was applied in the sub-sub-plots, with C1 as the control, and C2 involved spraying the sprouted barley seed extract at a concentration of 100 g L-1. The results showed a positive and significant effect of the biostimulant treatments Trichoderma harzianum, Bacillus subtilis, amino acids Arginine, and Tryptophan, Phenylalanine, and sprouted barley seed extract, and their interactions, in increasing the concentrations of fatty acids in arugula seed oil, including Erucic, Palmitic, Stearic, Oleic, Lenolic, and Linolenic acids. This encourages the trend towards sustainable agriculture to enhance the health value of the oil while preserving the environment and the ecosystem.

Keywords

Arugula seed oil amino acids biostimulants sprouted grains

Article Details

How to Cite
Al-Jibawi, H. H. ., & Mijwel, A. K. . (2025). The Role of Biofertilizers and Sprouted Barley Grain Extract in Enhancing the Active Compound Content of Arugula Eruca vesicaria Mill Seeds Oil to Achieve Agricultural Sustainability. Basrah Journal of Agricultural Sciences, 38(1), 170–182. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2533

References

  1. AOAC (1995). Association of Official Analytical Chemists). Official Methods of Analysis, 16th Edition. AOAC International, Gaithersburg, MD.
  2. Alpresem, W. F., Al-Showily, A. K. N., & Alnajjar, M. A. (2025). Detection of medicinally Effective Compounds in Two Genera of Ornamental Palm Leaves and Roots (washingtonia filifera and Phoenix sp.). In IOP Conference Series: Earth and Environmental Science (Vol. 1487, No. 1, p. 012047). IOP Publishing.‏ https://iopscience.iop.org/article/10.1088/1755-1315/1487/1/012047/meta
  3. Al-Khafaji, A. M. H. H., & Al-jubouri, k. D. H. (2022). Influence of aqueous extract of barley sprouts, trehalose, and calcium on growth, quality and yield of carrot. Iraqi Journal of Agricultural Science 53(1): 133-140. https://doi.org/10.36103/ijas.v53i1.1517.
  4. Al-Maamori, H. A., (2024). Effects Bacterial Inoculation and organic Fertilization on Some Soil Properties and Growth of Potato Crop Role in Sustainable Agriculture. Basrah Journal of Agricultural Sciences, 37(2), 264–275. https://doi.org/10.37077/25200860.2024.37.2.20
  5. Al-Rawi, K. M., & Khalaf Allah, A. A. M. (2000). Design and Analysis of Agricultural Experiments, Dar Al-Kutub for Printing and Publishing, University of Mosul, Iraq. p. 488. https://scholar.google.com.eg/scholar?hl=ar&as_sdt=0,5&cluster=4976190406483417194
  6. Al-Yasiry, Z. F. H., & Mijwel, A. K. (2024). Role of Bio- fertilizer and Amino acid spraying on growth and yield of two type Mint plant and its contents of some active constituent, Euphrates Journal of Agriculture Science,16 (2): 605-516.
  7. Azza, S. M., & Yousef, R. S. (2015). Response of Basil Plant (Ocimum sanctum L.) to Foliar Spray with Amino Acids or Seaweed extract. Journal of Horticultural, Science and Ornamental Plants, 7 (3): 94-106.
  8. Bagni, N., & Tassoni, A. (2001). Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants, Amino Acids 20(3): 301–317. https://doi.org/10.1007/s007260170046.
  9. Castro-Camba R., C. Sánchez, N. Vidal & Vielba, J. M. (2022). Plant Development and Crop Yield: The Role of Gibberellins. Plants (Basel),11(19):2650. https://doi.org/10.3390/plants11192650. PMID: 36235516; PMCID: PMC9571322.
  10. Choudhary, D. K., K. P. Sharma & Gaur, R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnology Letters, 33, 1905–1910. https://doi.org/10.1007/s10529-011-0662-0.
  11. De Andrade L.A., C.H.B. Santos, E.T. Frezarin, L.R. Sales, & Rigobelo, E. C. (2023). Plant Growth-Promoting Rhizobacteria for Sustainable Agricultural Production. Microorganisms,11(4): 1088. https://doi.org/10.3390/microorganisms11041088.
  12. Deng, Y., & Shanfa, L. (2017). Biosynthesis and Regulation of Phenylpropanoids in Plants. Journal Critical Reviews in Plant Sciences ,36(4):257-290. https://doi.org/10.1080/07352689.2017.1402852
  13. Essa, Z. M. (1992). Physiological studies on some rose varieties. Ph. D. Thesis, Fac Agriculture. Ain-Shams.
  14. Fuentes, E., M. Alarcon, M. Fuentes, G. Carrasco, & Palomo, I. (2014). A Novel Role of Eruca sativa Mill. (Rocket) Extract: Antiplatelet (NF-kB Inhibition) and Antithrombotic Activities, 6(12): 5839–5852. https://doi.org/10.3390/nu6125839.
  15. García-Fraile, P., E. Menéndez, & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineerin,, 2, 183–205. https://doi.org/10.3934/bioeng.2015.3.183
  16. Gupta K, A. Sengupta, M. Chakraborty, & Gupta, B. (2016). Hydrogen Peroxide and Polyamines Act as Double-Edged Swords in Plant Abiotic Stress Responses. Front Plant Science,7:1343. https://doi.org/10.3389/fpls.2016.01343
  17. Haran, M. S.., & Thaher, A. Z. T. (2019). Effect Bio-fertilizer of Bacillus, Azotobacter and Pseudomonas floresence in the Growth and Production of Corn Plant (Zea mays L.). Basrah Journal of Agricultural Sciences, 32, 7–14. https://doi.org/10.37077/25200860.2019.252
  18. Hyun, M. Woo, Y. H. Yun, J. Y. Kim, & Kim, S. H. (2011). Fungal and Plant Phenylalanine Ammonia-lyase. Mycobiology, 39(4): 257-265. https://doi.org/10.5941/MYCO.2011.39.4.257.
  19. Jacob, S. M., & Paranthaman, S. (2023). Biofertilizers: an advent for eco-friendly and sustainable agriculture development, Vegetos, 36, p. 1141–1153. https://doi.org/10.1007/s42535-022-00550-9.
  20. Illingworth, C., M. J. Mayer, K. Elliott, C. Hanfrey, A. J. Michael, & Walton, N. J. (2003). The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway, FEBS Letters,549(1-3): 26–30. https://doi.org/10.1016/s0014-5793(03)00756-7.
  21. Mahapatra, S. , R. Yadav, & Ramakrishna ,W. (2022). Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde, Journal of Applied Microbiology, 132(5):3543-3562. https://doi.org/10.1111/jam.15480.
  22. Matas-Baca M. A., M. A. Flores-Córdova, S. Pérez-Álvarez, M. J. Rodríguez-Roque, N. A. Salas-Salazar, M. C. Soto-Caballero, & Sánchez-Chávez, E. (2023). Trichoderma fungi as an agricultural biological control in Mexico, Revista Chapingo Serie Horticultura,Vol. 29(3):80-114. https://doi.org/10.5154/r.rchsh.2022.11.015
  23. Mohammed, H.C., & Rafiq, A. (2009). Investigating possibility of using least desirable adible oil of Eruca sativa Mill. In bio diesel production, Pakistan Journal. Botany,41(1):481-487. http://www.pakbs.org/pjbot/PDFs/41(1)/PJB41(1)481.
  24. Mohamed, S. M., & Khalil, M. M. (1992). Effect of tryptophan and arginine on growth and flowering of some winter annuals. Egypt. Journal Applied Science., 7 (10):82-93.
  25. Mostafavian, S. R., H. Pirdashti, M. R. Ramzanpour, A. A. Andarkhor, & Shahsavari, A. (2008). Effect of mycorrhizae, Thiobacillus and sulfur nutrition on the chemical composition of soybean Glycine max (L.) Merr. seed. Pakistan Journal of Biological Science,11(6): 826-835. https://doi.org/10.3923/pjbs.2008.826.835
  26. Perkowski, M. C., & Warpeha, K M. (2019). Phenylalanine roles in the seed-to-seedling stage: Not just an amino acid, Plant Science,V. 289. https://doi.org/10.1016/j.plantsci.2019.110223.
  27. Reham, M. S., M. E. Khattab, S. S. Ahmed, & Kandil, M. A. M. (2016). Influence of foliar spray with phenylalanine and nickel on growth, yield quality and chemical composition of genoveser basil plant. African Journal Agriculture Research,11(16): 1398-1410. https://doi.org/10.5897/AJAR2015.10699
  28. Sosnowski J., M. Truba, & Vasileva, V. (2023). The Impact of Auxin and Cytokinin on the Growth and Development of Selected Crops, Agriculture, 13(3), 724. https://doi.org/10.3390/agriculture13030724
  29. Sudhakar, M., & Balliah, R. (2015). Phytochemical determination of a polyherbal extract using FTIR and GC–MS analysis. European Journal of Pharmaceutical and Medical Research,2(7):173–178.
  30. Suhag, M. (2016). Potential of bio fertilizers to replace chemical fertilizers. International Advanced Research Journal in Science, Engineering and Technology,3(5): 163-167. https://doi.org/10.17148/IARJSET.2016.3534
  31. Taherlou, A., & Dursun, A. (2019). Evaluation of Leaf Yield of Rocket (Eruca sativa Mill.) for use as Salad Vegetable in Iran, Journal of Horticultural Science & Ornamental Plants, 11 (1): 01-06. https://doi.org/10.5829/idosi.jhsop.2019.01.06
  32. Taher, M. S., & Al-ubaydi, R. M. (2017). Effect of Foliar spray of Tryptophan and Nitrogen fertilizer on Growth and yield of Rocket plant (Eruca sativa Mill.). Euphrates Journal of Agriculture Science, 9(4). https://www.iraqoaj.net/iasj/download/b3ceee59b8228e95
  33. Taiz, L., E. Zeiger; I. Max Moller, & Murphy, A. (2014). Plant Physiology,and Development. sixth Edition Sinauer Assotiates, Inc., Publishers Sunderland, Massachusetts. pp: 761.
  34. Tzin, V. & Galili, G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Moleculer Plant. 3(6): 956-72. https://doi.org/10.1093/mp/ssq048
  35. Ugur, A. ipk, S. Sinem, & llkay, A. E. O. (2010). Variation in fatty acid composition of the seed of eruca sativa Mill. Causedby different sowing period and nitrogen, pharmacognosy magazine,6(24):305-308. https://doi.org/10.4103/0973-1296.71801
  36. Yang, H. Q., & Gao, H. J. (2007). Physiological function of arginine and its metabolites in plants. Journal of plant physiology and molecular biology,33(1):1-8. https://pubmed.ncbi.nlm.nih.gov/17287563/
  37. Ye, Y., K. Nikovics, A. To, L. Lepiniec, E. T. Fedosejevs, S. R. Van Doren, S. Baud, & Thelen, J. J. (2020). Docking of acetyl-CoA carboxylase to the plastid envelope membrane attenuates fatty acid production in plants, Nature Communications, 11(1): 6191. https://doi.org/10.1038/s41467-020-20014-5
  38. Yousif, A. A., & Hassan, W. A. (2023). Molecular Identification of Postharvest Moldy Core Pathogens on Apple and Application of Biocontrol Products of Essential Oils (EOs) and Trichoderma harzianum. Basrah Journal of Agricultural Sciences, 36(1), 1–15. https://doi.org/10.37077/25200860.2023.36.1.01
  39. Zhang, H., Z. Wang, & Liu, O. (2015). Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids, Journal of Pharmaceutical Analysis, 5(4): 223230. https://doi.org/10.1016/j.jpha.2015.01.005.
  40. Zubair, M., A. Hanif, A. Farzand,T.M.M. Sheikh, A. R. Khan, M. Suleman, M. Ayaz, & Gao, X. (2019). Genetic screening and expression analysis of psychrophilic Bacillus sp. reveal their potential to alleviate cold stress and modulate phytohormones in wheat, Microorganisms, 7(9): 337. https://doi.org/10.3390/microorganisms7090337