Main Article Content
Abstract
The zebrafish Danio rerio is a popular model species for genetic and early development studies. It is relatively easy to maintain in laboratory, has a high fecundity rate and produces transparent embryos. Here, we characterise muscle development in early life stage zebrafish using paraffin sections of embryos and larvae treated with haematoxylin and eosin staining, and whole mount fluorescent immunohistochemistry. We found variations in the distribution of muscle mass throughout the body, with the greatest proportion of muscle mass found in the tail. Our data also showed for the first time the reaction of antibodies (protein expression) in muscle at early life stages of development. Whole mount fluorescent immunohistochemistry staining with three markers (PAX7, MF20 and F59) suggests that muscle development starts even earlier than previously suggested at the embryonic stage (1 dpf).
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Bassel-Duby, R., & Olson, E. N. (2006). Signaling Pathways in Skeletal Muscle Remodeling. Annual Review of Biochemistry, 75, 19–37. http://doi.org/10.1146/annurev.biochem.75.103004.142622
- Barbazuk, W. B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J., McPherson, J., & Johnson, S. (2000). The syntenic relationship of the Zebrafish and human genomes. Genome Research, 10, 1351–1358. https://doi.org/10.1101/gr.144700
- Chihara, D., Anthony, I., Romer, C., Bentzinger, F., Rudnicki, M. A., & Krauss, R. S. (2015). PAX7 is required for patterning the esophageal musculature. Skelet Muscle, 5, 39. https://doi.org/10.1186/s13395-015-0068-0
- Dew, I., Sircy, L. M., Milleville, L., Taylor, M. R., Lessman, C. A., & Ethan, A. C. (2014). Localization of the sodium -potassium chloride contransporter (slc12A2) during zebrafish embryogenesis and myogenesis and a screen for additional antibodies to study zebrafish myogenesis. 135-154. In: Lessman, C. A., & Carver, E. A. (Eds.). Zebrafish. Nova Science Publishers, 312pp.
- Doganli, C., Bukata, L., & Lykke-Hartmann, K. (2016). Whole-mount immunohistochemistry for anti-F59 in Zebrafish embryos (1–5 Days post fertilization (dpf)). 365–369. In: Bublitz, M. (ed.) P-Type ATPases. Methods in Molecular Biology, 1377pp.https://doi.org/10.1007/978-1-4939-3179-8_32
- Dunajski, E. (1979). Texture of fish muscle. Journal of Texture Studies 10, 301-318. https://doi/epdf/10.1111/j.1745-4603.1980.tb00862.x.
- Hammond, C. L., Daniel, Y. H., James, O., Tettamant, M., & Hughes, S. (2007). Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Developmental Biology, 302, 504-521. https://doi.org/10.1016/j.ydbio.2006.10.009
- kimmel, C. B., Ballard, W. W., Kimmel, S. R.; Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203, 253–310. https://doi.org/10.1002/aja.1002030302
- Kocaefe, M. J., Israeli, D., Ozguc, M., & Danos, O . G. L. (2005). Myogenic program induction in mature fat tissue (with MyoD expression). Experimental Cell Research, 308, 300–308. https://doi.org//10.1016/j.yexcr.2005.03.038
- Kudoh, T., Concha, M. L., Houart, C., Dawid, I. B., & Wilson, S. W. (2004). Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development, 131, 3581–3592. https://doi.org/10.1242/dev.01227
- Liu, S.; Li, Z.; Gui, J (2009). Fish-specific duplicated dmrt2b contributes to a divergent function through Hedgehog Pathway and maintains left-right asymmetry establishment function. PLoS ONE. 4, e7261. https:// doi:10.1371/journal.pone.0007261
- Macintosh, B. R., Gardiner, P. F., & McComas, A. J. (2006). Skeletal Muscle: Form and Function. 2nd edition. Human Kinetics, Champaign (IL), 432pp. https://www.worldcat.org/title/skeletal-muscle-form-and-function/oclc/607576751
- Mourabit, S., Edenbrow, M., Croft, D. P., & Kudoh, T. (2011). Embryonic development of the self-fertilizing mangrove killifish Kryptolebias marmoratus. Developmental Dynamics, 240, 1694–1704. https://doi.org/10.1002/dvdy.22668
- Ochi, H., & Westerfield, M. (2007). Signaling networks that regulate muscle development: Lessons from zebrafish. Development Growth and Differentiation, 49, 1-11. https://doi.org/10.1111/j.1440-169X.2007.00905.x
- Rescan, P. Y., Collet, B., Ralliere, C.; Cauty, C., Delalande, J. M., Goldspink, G., & Fauconneau, B. (2001). Red and white muscle development in the trout (Oncorhynchus mykiss) as shown by in situ hybridisation of fast and slow myosin heavy chain transcripts. The Journal of Experimental Biology, 204, 2097–2101. https://pubmed.ncbi.nlm.nih.gov/11441051/
- Row, R. H., Pegg, A., Kinney, B., Farr, G., Maves, L., Lowell, S., Wilson, V., & Martin, B. (2018). BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. Elife, 7, e31018. https://doi.org/10.7554/eLife.31018
- Sharma, P., Ruel, T. D., Kocha, K. M., Liao, S., & Rxiv, P. H. (2019). Single cell dynamics of embryonic muscle progenitor cells in zebrafish. Development, 146, 1-15. https://doi.org/10.1101/396713
- van Raamsdonk, W., van-Veer, L, Veeken, K.; Heyting, C.; & Pool, C. W. (1982). Differentiation of muscle fiber types in the teleost, Brachydanio rerio, the zebrafish. Posthatching development. Anatomy and Embryology, 164, 51-62. https://doi.org//10.1007/BF00301878
- Weinberg, E. S., Allende, M. L., Kelly, C. S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O. G., Grunwald, D. J. & Riggleman, B. (1996). Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development, 122, 271–280. https://dev.biologists.org/content/develop/122/1/271
References
Bassel-Duby, R., & Olson, E. N. (2006). Signaling Pathways in Skeletal Muscle Remodeling. Annual Review of Biochemistry, 75, 19–37. http://doi.org/10.1146/annurev.biochem.75.103004.142622
Barbazuk, W. B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J., McPherson, J., & Johnson, S. (2000). The syntenic relationship of the Zebrafish and human genomes. Genome Research, 10, 1351–1358. https://doi.org/10.1101/gr.144700
Chihara, D., Anthony, I., Romer, C., Bentzinger, F., Rudnicki, M. A., & Krauss, R. S. (2015). PAX7 is required for patterning the esophageal musculature. Skelet Muscle, 5, 39. https://doi.org/10.1186/s13395-015-0068-0
Dew, I., Sircy, L. M., Milleville, L., Taylor, M. R., Lessman, C. A., & Ethan, A. C. (2014). Localization of the sodium -potassium chloride contransporter (slc12A2) during zebrafish embryogenesis and myogenesis and a screen for additional antibodies to study zebrafish myogenesis. 135-154. In: Lessman, C. A., & Carver, E. A. (Eds.). Zebrafish. Nova Science Publishers, 312pp.
Doganli, C., Bukata, L., & Lykke-Hartmann, K. (2016). Whole-mount immunohistochemistry for anti-F59 in Zebrafish embryos (1–5 Days post fertilization (dpf)). 365–369. In: Bublitz, M. (ed.) P-Type ATPases. Methods in Molecular Biology, 1377pp.https://doi.org/10.1007/978-1-4939-3179-8_32
Dunajski, E. (1979). Texture of fish muscle. Journal of Texture Studies 10, 301-318. https://doi/epdf/10.1111/j.1745-4603.1980.tb00862.x.
Hammond, C. L., Daniel, Y. H., James, O., Tettamant, M., & Hughes, S. (2007). Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Developmental Biology, 302, 504-521. https://doi.org/10.1016/j.ydbio.2006.10.009
kimmel, C. B., Ballard, W. W., Kimmel, S. R.; Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203, 253–310. https://doi.org/10.1002/aja.1002030302
Kocaefe, M. J., Israeli, D., Ozguc, M., & Danos, O . G. L. (2005). Myogenic program induction in mature fat tissue (with MyoD expression). Experimental Cell Research, 308, 300–308. https://doi.org//10.1016/j.yexcr.2005.03.038
Kudoh, T., Concha, M. L., Houart, C., Dawid, I. B., & Wilson, S. W. (2004). Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains. Development, 131, 3581–3592. https://doi.org/10.1242/dev.01227
Liu, S.; Li, Z.; Gui, J (2009). Fish-specific duplicated dmrt2b contributes to a divergent function through Hedgehog Pathway and maintains left-right asymmetry establishment function. PLoS ONE. 4, e7261. https:// doi:10.1371/journal.pone.0007261
Macintosh, B. R., Gardiner, P. F., & McComas, A. J. (2006). Skeletal Muscle: Form and Function. 2nd edition. Human Kinetics, Champaign (IL), 432pp. https://www.worldcat.org/title/skeletal-muscle-form-and-function/oclc/607576751
Mourabit, S., Edenbrow, M., Croft, D. P., & Kudoh, T. (2011). Embryonic development of the self-fertilizing mangrove killifish Kryptolebias marmoratus. Developmental Dynamics, 240, 1694–1704. https://doi.org/10.1002/dvdy.22668
Ochi, H., & Westerfield, M. (2007). Signaling networks that regulate muscle development: Lessons from zebrafish. Development Growth and Differentiation, 49, 1-11. https://doi.org/10.1111/j.1440-169X.2007.00905.x
Rescan, P. Y., Collet, B., Ralliere, C.; Cauty, C., Delalande, J. M., Goldspink, G., & Fauconneau, B. (2001). Red and white muscle development in the trout (Oncorhynchus mykiss) as shown by in situ hybridisation of fast and slow myosin heavy chain transcripts. The Journal of Experimental Biology, 204, 2097–2101. https://pubmed.ncbi.nlm.nih.gov/11441051/
Row, R. H., Pegg, A., Kinney, B., Farr, G., Maves, L., Lowell, S., Wilson, V., & Martin, B. (2018). BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. Elife, 7, e31018. https://doi.org/10.7554/eLife.31018
Sharma, P., Ruel, T. D., Kocha, K. M., Liao, S., & Rxiv, P. H. (2019). Single cell dynamics of embryonic muscle progenitor cells in zebrafish. Development, 146, 1-15. https://doi.org/10.1101/396713
van Raamsdonk, W., van-Veer, L, Veeken, K.; Heyting, C.; & Pool, C. W. (1982). Differentiation of muscle fiber types in the teleost, Brachydanio rerio, the zebrafish. Posthatching development. Anatomy and Embryology, 164, 51-62. https://doi.org//10.1007/BF00301878
Weinberg, E. S., Allende, M. L., Kelly, C. S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O. G., Grunwald, D. J. & Riggleman, B. (1996). Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development, 122, 271–280. https://dev.biologists.org/content/develop/122/1/271